

© education.makeblock.com 1

Course Description

This course introduces a wide range of smart applications in various situations. It focuses on the use and application of
data. Students will utilize and strengthen their logical and mathematical thinking skills to design smart application
solution based on data collected from daily life. Students will also develop their growth mindset and transferable skills
during their exploration and learning journey in this course. Students will explore and elaborate on various physical
components and consider how to program them, create digital artefacts, and demonstrate the prospect of technologies
and how it drives to a smart society.

This course addresses the following key themes:

• Data in everyday life
• Data and smart applications
• Data and creative culture

Content

Lesson Area of Enquiry

Lesson 1 – Noise Detector

Smart Automation

Lesson 2 – Voice Reactive Lights

Lesson 3 – Remote Classroom Polling

Lesson 4 – Houseplant Care

Lesson 5 – Smart Notifier

Lesson 6 – Parcel Locker

Lesson 7 – Intelligent Vehicles

Lesson 8 – Bus Tracker

Lesson 9 – Colors Hunter

Game Design

Lesson 10 – Opposite Game

Lesson 11 – Catch Fish Carnival Game I

Lesson 12 – Catch Fish Carnival Game II

Lesson 13 – Dodge the Bird I

Lesson 14 – Dodge the Bird II

© education.makeblock.com 2

Target Audience

Age groups: 11~14 years old (11~12 years old)

Level of Difficulty

Introductory, prior block-based programming knowledge is necessary

Effort

40~45 minutes per lesson, 14 lessons in total for one semester/term

© education.makeblock.com 3

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Identify the basic characteristics and types of data.

• Clarify the importance and common use of data in everyday life.

• Use sensors to retrieve data, and display data on the screen.

• Write programs to create a noise detector.

 Key Focus

• Basic understanding of the characteristics and types of data, and the importance of data in everyday life.

• Using sensors to retrieve data and displaying data on the screen.

• Identifying different types of data and their functions.

 Content Standards

Type Indicator Standard

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-11
Create clearly named variables that represent different data types and perform
operations on their values.

ISTE 5b
Students collect data or identify relevant data sets, use digital tools to analyze
them, and represent data in variousways to facilitate problem-solving and
decision-making.

Lesson 1

Noise Detector

© education.makeblock.com 4

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

• Pens and paper

For Students:

• Proficiency in block-based coding

• Basic knowledge of sensors

© education.makeblock.com 5

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Have students do an in-class survey and collect data, preparing them for the later

introduction to data.

5 minutes

Section 2 – Explore

• Introduce a scenario where a noise detector could be used, and have students

think about noise pollution in their life.

5 minutes

Section 3 – Explain

• Have students brainstorm possible solutions to deal with the data they've

collected, and design features they want.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes
Section 5 – Evaluate

• Have students think of any situation in which they will use their project.

© education.makeblock.com 6

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Have students do an in-class survey and collect data, preparing them for the later session about what data is.

Procedures:

• Hand out pens and paper to students. Have students work in pairs. Ask them to investigate the topic by

asking classmates on the following questions:

(1) Where would you like to spend your weekends most?

(2) How many times do you go to the library per month?

(3) Have you ever seen any uncivil behaviors?

• Give students 1 minute to work on their survey.

• Pick 2 or 3 students to share their survey.

• Ask: What's your first thought when you hear "data"? What is data?

• Explain:

o Types of data: The answers to the three questions above could all be considered data. Data is distinct

information that is formatted in a special way. Birthday, hobby, height, weight and others. All these are

data. Data exists in a variety of forms, like images, sounds, texts, symbols and more.

o Use of data: Data could be used to convey messages, e.g. queue management system, weather report,

bus arrival notification...

o Summary: Data helps us solve problems in many ways.

© education.makeblock.com 7

Section 2 – Explore

[5 minutes]

Objective:

• Introduce a scenario where a noise detector could be used, and have students think about noise pollution in

their life.

Procedures:

• Discuss a scenario where noises are annoying.

• Ask: If you’re on a bus and someone is talking aloud, how will you feel?

• Ask: Suppose we now have a device that's monitoring sounds around. To reduce some noises like this, how

should we design the device? What features must the device have? You have 1 minute to discuss with your

partner.

• Pick 2 students to share their thoughts.

• Categorize the features based on students’ discussion

© education.makeblock.com 8

Section 3 – Explain

[5 minutes]

Objective:

• Have students brainstorm possible solutions to deal with the data they've collected, and design features they

want.

Procedures:

• Show students how the noise detector works.

• Work with students to analyze what features a noise detector must have, and draw a mind map.

© education.makeblock.com 9

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Show students where these modules are on CyberPi: LED Screen, Buttons, Joystick, Switch, Sensors, LED

Indicators.

• Teach students how to start their CyberPi and connect the device to mBlock.

• Add the device CyberPi in mBlock, and start programming it.

• Display sound volume

o Use CyberPi's sound sensor to detect sound volume. Tick the coding block below to display volume on

the stage in mBlock.

o To display sound volume on CyberPi's screen, you need to use the following three blocks

© education.makeblock.com 10

Blocks

palette
Coding blocks Feature

Use this block and drag the sliders
to decide the color of your
content displayed on the screen.

Use this block to decide what
content you're going to display on
the screen.

Use this block to remove all the
content on the screen.

o Program CyberPi to display sound volume:

o NOTE:

© education.makeblock.com 11

① Remove all the exis�ng content on the screen at the very beginning to make sure the new content

is clearly displayed.

② Have students use the device to directly retrieve volume and observe what happens.

o Explain: The device has an in-built sensor to detect sound volume in real time, so the volume value

retrieved will keep fluctuating all the time. As a result, you may find it much harder to see an exact

volume value on the screen. To slow down the changes of value, you can set up a variable named

"volume" to store the volume value retrieved.

• Make decisions based on the sound volume

o Decide whether to give alerts or not.

o Use the block broadcast () and wait to send alerts.

Blocks

palette
Coding blocks Feature

Use this block to broadcast

messages and wait until the scripts

activated by the broadcast stop

running before beginning to

execute the next command.

o Relying on the mind map, program CyberPi to make decisions based on volume:

© education.makeblock.com 12

o NOTE:

The example program above uses "40" as a threshold. But students can change the threshold to

another value as they'd like to.

o Define the alerts and standby

o Based on what we observed, CyberPi will give the following alerts when the volume is too high.

① LEDs blink red;

② The screen displays the text "Please be quiet".

o Program CyberPi to give alerts:

 LEDs blink red:

© education.makeblock.com 13

Use the blocks below:

Blocks

palette
Coding blocks Feature

Use this block to decide what color
the LED turns on and which LED to
turn on.

Use this block to turn off all LEDs or
a specific LED.

 Program CyberPi to display the warning text "Please be quiet" on its screen:

© education.makeblock.com 14

o Standby status:

① LEDs turn off;

② Warning text disappears.

 Program CyberPi to define its standby status:

 NOTE:

The program already includes a coding block for clearing the screen, so we don't need to clear

the screen again here.

© education.makeblock.com 15

Section 5 – Evaluate

[5 minutes]

Objective:

• Have students think of any situation in which they will use their project. Make them rethink about incivility in

public space and the application of data in everyday life.

Procedures:

• Pick 1 or 2 students to showcase their noise detector.

• Where do we need to use noise detectors? Where and when should we be careful about our volume? Ask

students to have a discussion.

• Ask: Can you think of any other applications of data in daily life? What data are you familiar with in your

everyday life?

© education.makeblock.com 16

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Display a bar chart on the screen

• Change lighting effects and bar chart based on the sound levels

• Use mind maps to analyze how to complete a project

• Write programs to complete the Voice Reactive Lights project

 Key Focus

• Displaying a bar chart on the screen

• Changing lighting effects based on sound levels

 Content Standards

Type Indicator Standard

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-11
Create clearly named variables that represent different data types and perform
operations on their values.

ISTE 5b
Students collect data or identify relevant data sets, use digital tools to analyze
them, and represent data in various ways to facilitate problem-solving and
decision-making.

Lesson 2

Voice Reactive Lights

© education.makeblock.com 17

 Preparation

For the Teacher:

• A laptop or desktop with mBlock 5 installed

• A CyberPi kit

For Students:

• Prior knowledge of CyberPi’s major features and how to collect data with CyberPi’s sensors

© education.makeblock.com 18

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Show pictures and play videos to demonstrate how to apply lights and sounds in a

show.

5 minutes
Section 2 – Explore

• Bring up the question and have students brainstorm.

5 minutes

Section 3 – Explain

• Focus on the interaction between sound, light, and fountain, and prepare students

for the Elaborate part.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes
Section 5 – Evaluate

• Play some music and invite students to present their projects.

© education.makeblock.com 19

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Show pictures and play videos to demonstrate how to apply lights and sounds in a show.

Procedures:

• Have students search for and compare traditional fountains and musical fountains.

• Have students answer the questions: Which type of fountains do you like? Why?

• Introduce the working principles and characteristics of musical fountains.

- Music, lights, and fountain are programmed to react to each other.

- The lights and fountain are programmed to react to the music

© education.makeblock.com 20

Section 2 – Explore

[5 minutes]

Objective:

• Bring up the question and have students brainstorm.

Procedures:

• Discuss musical fountains.

• Have students answer the question: How do the music, fountain, and lighting fit together?

• Conclude the following:

Louder music means ① lights in a darker color, ② higher spout, and ③ faster changes in shapes.

Softer music means ① lights in a lighter color, ② lower spout, and ③ slower changes in shape.

© education.makeblock.com 21

Section 3 – Explain

[5 minutes]

Objective:

• Focus on the interaction between sound, light, and fountain, and prepare students for the Elaborate section.

Procedures:

• Tell students: Though we can’t make musical fountains, we can use CyberPi to make Voice Reactive Lights.

• Analyze with the students what features the project has and draw a mind map.

© education.makeblock.com 22

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Remind students that they need to connect the device to the computer and select Upload mode.

• Recap what hardware components CyberPi has and demonstrate how to detect sound level with the sound

sensor.

• Design lighting effects:

o Tell students: To change the lighting effects, we need these coding blocks.

Category Coding block Feature

This lighting block sets the color of a specific
LED with specified RGB values. Each color
component ranges from 0 to 255. The
greater values produce brighter lights.

This block defines the brightness of the LEDs.
The value ranges from 0 to 100. Increase the
value to make the light stronger and reduce
the value to make the light weaker.

o Say: We’ve learned that we could use the volume to decide the lighting and other effects. So, why

don’t we try using the sound sensor to detect the sound level?

o NOTE:

① To have ligh�ng effects randomly produced, use pick random () to () to set the RGB values.

② To ensure a seamless transi�on between different light effects, use wait () seconds.

 (Instruct students to include the wait block in the program, then remove it, and compare the results.)

© education.makeblock.com 23

③ The ligh�ng starts changing as soon as the program runs.

• Design what to display on the screen.

o Use chart-related blocks to show the sound levels on the display.

Category Coding block Feature

This block draws a bar. It defines
the number that a bar represents
and shows the bar on the screen.

o NOTE:

① To draw more bars, use more blocks.

② Use different colors to dis�nguish bars. If you set different bars to the same color, then all the data

will be shown in the same bar. Look at the script below:

o If we run the script above, a white bar and a red bar appear on the display. Every time this script is

run, the white bar goes up to 50 first then falls to 10 while the red bar stays at 50 all the time.

o To make volume bars with different heights, collect volume data at specific intervals.

o To collect volume data, write the script below:

© education.makeblock.com 24

o To continuously display sound levels, write a script as shown:

NOTE:

① Instruct the students to do the following:

(a) make a volume bar;

(b) make two bars with the same height;

(c) use variables to make bars with different heights;

(d) make four volume bars with different heights.

② To make the volume bars more dynamic, keep the intervals short.

③ CyberPi starts drawing bars as soon as the scripts are executed. So, the ligh�ng effect script and

volume bar script should both start with the same Event block.

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 25

Objective:

• Play some music and invite students to present their projects.

Procedures:

• Play music and invite students to present their projects.

NOTE:

① Divide students into groups and have them present the projects to their group members.

② Invite volunteers to present their projects in front of the whole class.

© education.makeblock.com 26

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Describe the features of LAN, and broadcast and receive data through LAN

• Generate a bar chart based on the votes

• Analyze poll results and draw conclusions

• Use mind maps to analyze how to make a remote classroom polling system

• Write programs and complete the remote classroom polling project

 Key Focus

• Analyzing data charts

• Sending and collecting data with LAN broadcasting

• Processing votes and generating a bar chart

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 3-1
Identify complex, interdisciplinary, real-world problems that can be solved
computationally.

K12 CS
Framework

Practice 3-3 Evaluate whether it is appropriate and feasible to solve a problem
computationally.

CSTA 2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 3

Remote Classroom Polling

© education.makeblock.com 27

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

For Students:

• Able to write programs with coding blocks

• Prior knowledge of CyberPi’s major features

© education.makeblock.com 28

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Use videos to bring up the voting and polling topic and introduce voting systems

and LAN.

5 minutes

Section 2 – Explore

• Prepare a few poll questions in which students may be interested. Encourage

students to brainstorm the features that a voting system should have.

5 minutes

Section 3 – Explain

• Instruct students to use mind maps to analyze the project and prepare to

program.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Decide or have students decide the poll question. Give students time to try the

voting system and analyze the result.

© education.makeblock.com 29

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Use videos to bring up the voting and polling topic and introduce voting systems and LAN.

Procedures:

• Start the class by saying: Have you ever watched any competition shows? In these shows, a voting

session usually follows the competitors’ performances.

• Ask: During the live voting session, how did the audience vote? What about those watching the show

at home? Could they participate in the session?

Have students answer the questions.

• Ask: Do you know how to limit access to the voting session? Like in the voting session I mentioned just

now, only the live audience can vote, and the home audience can't.

• Introduce LAN: One of the common ways is to connect the voting machines to the same private

network. This kind of network is usually used within an area and hence, called Local Area Network

(LAN). Unlike the Internet, a LAN is a closed network, which means only the devices connected to the

same LAN can share resources and information.

© education.makeblock.com 30

Section 2 – Explore

[5 minutes]

Objective:

• Prepare a few poll questions in which students may be interested. Encourage students to brainstorm

the features that a voting system should have.

Procedures:

• Explain and ask: In this lesson, we will use CyberPi to form a LAN and then run a poll. And only we, in

this classroom, can vote. So, how do we make a voting system with CyberPi and mBlock?

Give students time to discuss the question.

• Conclude: First, we need an initiator to start a poll. Then, the rest of us will be voters. When the voting

session closes, the initiator counts the votes.

© education.makeblock.com 31

Section 3 – Explain

[5 minutes]

Objective:

• Instruct students to use mind maps to analyze the project and prepare to program.

Procedures:

• Demonstrate how remote classroom polling works.

• Analyze with students what features the remote classroom polling project should have and draw a

mind map.

© education.makeblock.com 32

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Explain: We write programs for the initiator and the voter separately, so we’ll need two CyberPi

boards. In mBlock, select Upload mode before writing programs for the two boards.

• Walk students through the programs for the initiator and the voter respectively. To write programs for

the initiator, select CyberPi in Devices, and select CyberPi 2 to write programs for the voter.

• The initiator starts a poll:

o To make multiple CyberPi boards communicate with each other, we need the LAN blocks.

Category Coding block Feature

This block sends a broadcast on

LAN. Type the message you want

to send in the slot.

o Select CyberPi in Devices and write programs for the initiator.

o Send out options:

 Create two option variables to record the votes. The initiator CyberPi sends a LAN

broadcast "options", displays a prompt "Options sent. Poll starts", and lights up indicators.

© education.makeblock.com 33

 NOTE: Create two variables to record the votes for the two options and set both

variables to 0.

o Send out options/Set voting period

 Apart from starting the poll, the initiator sets the voting period, so it needs to set a

timer. Only during the voting period that is set up, voters can cast their votes. As the

poll ends, the initiator starts counting the votes.

 NOTE: The timer will be used to decide whether a voter casts a vote within the voting

period.

© education.makeblock.com 34

• Voters send in votes:

o When receiving the broadcast "options", a voter starts to vote. During the voting session,

voters send their votes on LAN through broadcasting. You’ll need these blocks in your program:

Category Coding block Feature

This block executes the script that

follows it when receiving the

broadcast. Make sure you type the

correct broadcast in the slot.

This block sends a broadcast and a

value. You can define the

broadcast and the value. The

value can be English letters or

numbers.

o Select CyberPi 2 in Devices and write programs for the voter.

o Display options:

 Type "options" in when receiving () broadcast on Wi-Fi. Make sure the broadcast

name is the same as the one in the initiator program. When receiving the broadcast,

the voter CyberPi lights up indicators and displays the options and voting instructions.

o Cast votes:

© education.makeblock.com 35

 Make sure voters can cast only one vote by recording their voting status. The voter

CyberPi sends a LAN broadcast "vote". When the vote is sent through, a prompt will

appear on the screen of the voter CyberPi, and indicators will light up.

 Whether the joystick is pulled decides the voting status and the direction to which the

joystick is pulled indicates the voter’s choice. You’ll need this block in your program:

Category Coding block Feature

This Boolean block checks the action done to the

joystick. It offers five options: pulled ↑, pulled

↓, pulled ←, pulled →, and middle pressed.

 NOTE:

① To make sure each voter can only cast one vote, create a variable "VotingStatus" to

record whether a voter finishes voting. When the variable is 0, it means the voter hasn’t

voted yet. VotingStatus changes to 1 when the voter finishes voting.

② The example program includes only one option. Complete the program that

provides two voting options.

• Initiator collects votes:

© education.makeblock.com 36

o The initiator collects the votes via LAN broadcast. You’ll need this block to enable that:

Category Coding block Feature

This block receives the value

sent with the broadcast. Make

sure you type the correct

broadcast in the slot.

o Select CyberPi in Devices and write another initiator program.

o Type "vote" in when receiving () broadcast on Wi-Fi. Make sure the broadcast name is the

same as the one sent from the voter program. When receiving the broadcast during the voting

period, the initiator collects the votes and lights up indicators.

o NOTE:

① Include a �mer in the script to check whether a vote is submi<ed within the voting period.

② To count the votes, set a condi�onal statement to check the broadcast value, and increase

the vote by 1 for the corresponding option based on the value received.

③ The example program counts the votes for op�on a. Complete the program that can count

the votes for both options.

④ If different CyberPi boards send through the same message via the same LAN at the same

time, the receiver CyberPi will only receive the message once. That is if multiple voters select

option A at the same time, then the initiator will count only one vote for Option A. However, the

possibility of this incident is faint.

© education.makeblock.com 37

• Initiator checks the polling result

o You can display the polling result with text or a bar chart. And these blocks may help:

Category Coding block Feature

This block makes CyberPi display text

and specifies the location and size of

the text. It includes nine locations and

four font sizes.

This Boolean block detects whether

button A or B is pressed.

© education.makeblock.com 38

o NOTE:

① The example program displays the vote tally for option a. Complete the program that

displays the vote tally for both options.

② Set different colors for different bars when visualizing the result with a bar chart.

③ If the number of voters is small, add a base number to the vote tally of each option. For

example, . In this way, the bar chart will be clearer.

• Allow students time to test their programs and then invite them to describe the bar chart and draw

conclusions.

© education.makeblock.com 39

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 40

Objective:

• Decide or have students decide the poll question. Give students time to try the voting system and

analyze the result.

Procedures:

• Initiate a classroom poll and invite students to vote. (Possible subject: favorite song/movie

star/singer/game, etc.)

• When the poll is done, invite students to analyze the result data chart. For example, have students

figure out which is the most popular song among the class and why it is so popular.

© education.makeblock.com 41

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Explain the relationship between plants and water and identify how much water different plants need

• Simulate sunlight and monitor the moisture of plants

• Use mind maps to analyze how a plant monitoring device works

 Key Focus

• Use sensors to measure and monitor the moisture of plants

• Simulate sunlight and water loss using sensors and send alarms when water is insufficient or too much

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 3-1
Identify complex, interdisciplinary, real-world problems that can be solved
computationally.

K12 CS
Framework

Practice 3-3
Evaluate whether it is appropriate and feasible to solve a problem
computationally.

CSTA 2-IC-20
Compare tradeoffs associated with computing technologies that affect
people’s everyday activities and career options.

CSTA 2-AP-13 Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 4

Houseplant Care

© education.makeblock.com 42

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

For Students:

• Able to write programs with coding blocks

• Prior knowledge of CyberPi’s major features

© education.makeblock.com 43

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Before students design plant monitoring devices, help them learn about plants

and the purpose of the houseplant care project.

5 minutes

Section 2 – Explore

• Introduce the application of a plant monitoring device. Encourage students to

think about how to design this project. Enhance students' independent

thinking skills.

5 minutes

Section 3 – Explain

• Make students analyze the Plant Monitoring Device project's functionalities

with mind maps. Ask them to consider what the plant monitoring device could

perform.

20 minutes

Section 4 – Elaborate

• Instruct students to design the Plant Monitoring Device project.

• Have students program the different functions of the plant monitoring device.

5 minutes
Section 5 – Evaluate

• Have students further explore what they've learned based on this project.

© education.makeblock.com 44

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Before students design plant monitoring devices, help them learn about plants and the purpose of the

houseplant care project.

Procedures:

• Introduce the topic of this lesson.

o Say: Plants can clean air, relax our minds and eyes, and add color to the environment. All life

needs water. We need water, so do plants.

o Play a video demonstration to help students learn more about plants.

o Summarize: Water is essential in plant's healthy growth, photosynthesis, and transpiration.

Plants have different features, and hence, different water needs. For example, cacti, covered in

spines, dry out very slowly, so we can water them once a month. Some plants, such as Chinese

money plants (i.e. Pilea Peperomioides) with flat, thin, big leaves, need much water, so we'd

better water them every day. Most plants, such as chrysanthemums and morning glories, only

need watering once a week

o Ask: What will happen if we water our plants too frequently or forget to water them?

o Have students think about and discuss the above question.

o Summarize: Plants will dry out and wither if we forget to water them. But if we water them too

often, they may die of overwatering. We should be aware that overwatering wastes water,

especially when it comes to watering many plants, like during agricultural irrigation.

Section 2 – Explore

[5 minutes]

© education.makeblock.com 45

Objective:

• Introduce the application of a plant monitoring device. Encourage students to think about how to

design this project. Enhance students' independent thinking skills.

Procedures:

• Introduce the design challenge of this lesson: To design a plant monitoring device to remind plant

lovers to water their plants appropriately.

o Ask: What features do you think a plant monitoring device should contain?

o Possible answers: A plant monitoring device could be able to:

 Detect whether a plant has a moisture problem; and

 Remind the user to take care of the plant when it has a moisture problem.

Section 3 – Explain

[5 minutes]

© education.makeblock.com 46

Objective:

• Make students analyze the Plant Monitoring Device project's functionalities with mind maps. Ask them

to consider what the plant monitoring device could perform.

Procedures:

• Demonstrate the desired outcomes of the Plant Monitoring Device project.

• Instruct students to identify the functions and applications of the plant monitoring device by means of

the mind map.

Section 4 – Elaborate

[20 minutes]

© education.makeblock.com 47

Objectives:

• Instruct students to design the Plant Monitoring Device project.

• Have students program different functions of the plant monitoring device.

Procedures:

• Prepare to write Python programs.

o Have students get their CyberPi devices ready, connect it to mBlock, and switch to Live mode in

mBlock.

o Distribute the example program to students and ask them to open it.

o Observe the three sprites on the stage and analyze their possible features.

[Note: Assume the three plants are given the same amount of sunlight in this project.]

Plant Sprite Feature

Cactus7

• Low demand for water

• Slowly dries out

Pot plant12

• Medium demand for water

• Dries out at a medium speed

Pot plant1

• High demand for water

• Quickly dries out

• Instruct students to write programs based on the mind map for project design.

• Instruct students to program the project. Make it display current moisture level.

o Simulate the water loss process: Use the light sensor to simulate the light. When the light is

intense, the plant loses water faster. Remind students that plants have different water loss

speeds, so they need to set up the speed accordingly.

 Create a variable light to store the data returned by the light sensor.

© education.makeblock.com 48

 Create variables moisture1, moisture2, and moisture3. Set different variables to

represent the moisture level of the three plants:

Plant Sprite Variable

Cactus7

Pot plant12

Pot plant1

 Simulate the water loss of the plants:

Plant Sprite Script

Plant “Cactus7” slowly dries out:

© education.makeblock.com 49

Plant “Pot plant12” out at medium speed:

Plant “Pot plant1” quickly dries out:

Tips for coding:

 Divide the variables light by different numbers to simulate the plants' drying out

process.

© education.makeblock.com 50

Plant Divisor Drought resistance Water loss speed

Cactus7 30 High Slow

Pot plant12 20 Medium Medium

Pot plant1 10 Low Fast

 Set the condition "moisture is greater than 0" to avoid the variables going negative.

 Use the wait block to prevent the moisture variables from decreasing too fast.

o Display moisture level: CyberPi's screen can display a bar chart to represent the moisture level

of the three plants

 Use different colors to represent the indicators for different plants.

 Round off the moisture values with the round block because CyberPi can only display

integers.

• Make the project send alarms when plants have a moisture problem.

o Detect moisture problems: The program decides whether to send an alarm.

© education.makeblock.com 51

 Ask students to complete the scripts for Plant “Pot plant12” and Plant “Pot plant1” in

reference to the above example.

 Set the two conditions:

If the moisture is under 50, it means the plant lacks water;

If the moisture is over 110, it means the plant is overwatered.

When one of the conditions is true, the program sends the alarm.

 Remind students that they can change the numbers (here 50 and 110) based on their

design.

o Raise alarms: When the plant has a moisture problem, a light indicator lights up.

 Example of Plant ‘Cactus7’ Indicator:

 Ask students to complete the scripts for Plant “Pot plant12” Indicator and Plant “Pot

plant1” Indicator in reference to the above example.

 However, when the plant's moisture returns to the normal range, the alarm should

stop.

 Ask students to complete the scripts for Plant “Pot plant12” Indicator and Plant “Pot

plant1” Indicator in reference to the above example.

© education.makeblock.com 52

 Remind students that they can change the numbers (here 90 and 110) based on their

design.

• Program the watering process.

o Use the joystick to select a plant: Create another variable and name it: choice. Use this

variable to select a plant.

 The variable choice can increase only when it's less than 3 and decrease only when itis

greater than 1. Use this setting to limit the variable between 1 and 3.

 When the value of choice equals 1, the first plant is selected. When the value of choice

equals 2, the second plant is selected. When the value of choice equals 3, the third

plant is selected.

o Add a new sprite “Diamond3”. Use it as an arrow that will appear under the selected plant on

the stage. Modify the sprite’s costumes to differentiate the arrows. Program this sprite as

follows:

© education.makeblock.com 53

o Water the plants: After you select a plant, pull the joystick down to water it.

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 54

Objective:

• Have students further explore what they've learned based on this project.

Procedures:

• Invite volunteer students to present their projects. Ask students to give feedback on each other's

projects and think about how to improve the projects.

• Have students introduce a plant (its name, features, and how to take care of it). Encourage them to do

online research about the growth characteristics of the plant.

© education.makeblock.com 55

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Use CyberPi to measure light intensity and shaking status.

• Define notifications for specific scenarios based on features and requirements.

• Use mind maps to analyze how to create a smart notifier.

• Program a Smart Notifier which features multiple functions and modes.

 Key Focus

• Defining notifications for specific scenarios based on the features and requirements.

• Programming the smart notifier to send notifications for specific scenarios.

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 3-1
Identify complex, interdisciplinary, real-world problems that can be solved
computationally.

K12 CS
Framework

Practice 3-3
Evaluate whether it is appropriate and feasible to solve a problem
computationally.

K12 CS
Framework

Practice 5-2
Create a computational artifact for practical intent, personal expression, or to
address a societal issue.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

Lesson 5

Smart Notifier

© education.makeblock.com 56

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed
• A CyberPi kit

For Students:

• Basic knowledge of how to use sensors and CyberPi

© education.makeblock.com 57

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Guide students in thinking about their daily habits and how these habits impact

their health. Have them consider using AI technologies to solve problems.

5 minutes

Section 2 – Explore

• Introduce students to some scenarios and have them think about how to design

CyberPi to send notifications under these scenarios.

5 minutes

Section 3 – Explain

• Based on mind maps, have students build an overall picture of the project,

preparing them for the later programming session.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further, so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• To enhance students' communication skills and understanding of their projects, ask

them to share their projects in front of the class. In this way, students will be likely

to pay more attention to their health.

© education.makeblock.com 58

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Guide students in thinking about their daily habits and how these habits impact their health. Have

them consider using AI technologies to solve problems.

Procedures:

• Ask: The COVID-19 pandemic has provoked a global crisis that had a deep impact on our everyday life

and learning. Schools are ordered to close, and people must stay at home. The pandemic makes us

realize the importance of health. Think about it! Do you have any daily habits that may be bad for your

health?

• Summarize: Not everyone cares enough about his or her health. Lots of people have some unhealthy

habits, for instance, using phones while lying down, sitting, or standing with a curved back and slumped

shoulders, and staying up late. In a tech-driven world, we could rely on modern technologies to track

our health conditions. For example, we use wearables to count steps, and track our heart rates and

sleep conditions through night.

© education.makeblock.com 59

Section 2 – Explore

[5 minutes]

Objective:

• Introduce students to some scenarios and have them think about how to design CyberPi to send

notifications in these scenarios.

Procedures:

• Have students discuss: In school, we do setting-up and eye exercises to relax our body and protect

eyes. But when at home, many of you will sit there for a long time, watching TV, playing video games or

on their phones. They don't move quite often. Sometimes you are just so into reading that you fail to

notice the light intensity level. Can you think of any ways to solve these problems?

• Summarize: We can design a product to monitor people's conditions and give alerts. For example, if

people sit too long, the product will remind them to stand up and relax their body; if it's dark, the

product will remind them to turn on the lights.

© education.makeblock.com 60

Section 3 – Explain

[5 minutes]

Objective:

• Based on mind maps, let students create an overall picture of the project, preparing them for the later

programming session.

Procedures:

• Introduce: We can use CyberPi to design a smart notification system which features 2 modes –

"Reading Mode" and "Sitting Mode". You can change the mode to let the system give specific

notifications.

• Show students how the smart notification system works.

• Work with students to analyze what features their smart notifier must have and draw a mind map.

© education.makeblock.com 61

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Prepare a CyberPi, connect it to mBlock, and switch to Live mode.

• Design the startup interface, prompting users to select a mode.

• Reading mode:

o Notification text on screen: The program for the other mode stops when one of the modes is

selected.

• Auto brightness:

o Program the light sensor. Set the brightness of LED lights to "100 – ambient light intensity". In

this way, when the ambient light gets dimmer, the LED lights turn brighter; when the ambient

light gets brighter, LED lights turn dimmer.

© education.makeblock.com 62

• Sitting mode:

• When you sit too long, it sends alerts:

o The program for the other mode stops when one of the modes is selected.

o Options: Lights, Sounds, Texts

• The system remains a sleep mode unless people sit too long.

o The system maintains a sleep mode unless people sit too long. Program the device to

determine whether people are sitting there too long or not, based on the shaking status.

© education.makeblock.com 63

o Introduce the coding block in the table.

Category Coding block Feature

Use this block to detect trigger actions. When

a specified action is detected, the condition is

met. There're eight actions, such as "wave

left", "waved right" and more.

o The timer is reset once shaking is detected.

o Repeat this piece of code.

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 64

Objective:

• To enhance students' communication skills and understanding of their projects, ask them to share their

projects in front of the class. In this way, students will be likely to pay more attention to their health.

Procedures:

• Invite 2 or 3 students to share their smart notifier in front of the class and have them explain what's

special about their project.

• Have students discuss: Can you think of any other unhealthy habits? Can you think of any methods to

improve your health?

© education.makeblock.com 65

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• List the ways to receive parcels and describe the significance of parcel lockers.

• Explain how a parcel locker works and write programs to send pickup codes and collect parcels with a

pickup code.

• Use mind maps to analyze the features of a parcel locker.

• Apply variables in programs to complete a parcel locker system.

 Key Focus

• Using variables to send and verify pickup codes

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 3-1
Identify complex, interdisciplinary, real-world problems that can be solved
computationally.

K12 CS
Framework

Practice 5-2
Create a computational artifact for practical intent, personal expression, or to
address a societal issue.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-11 Create clearly named variables that represent different data types and
perform operations on their values.

Lesson 6

Parcel Locker

© education.makeblock.com 66

 Preparation

For the Teacher:

• A laptop or desktop with mBlock 5 installed

• A CyberPi kit

For Students:

• Block-based coding skills

• Knowledge of how to use variables

© education.makeblock.com 67

 Agenda (40~45 minutes)

Duration Content

5~10 minutes
Section 1 – Engage

• List the ways to collect parcels and explain the application of parcel lockers.

5 minutes

Section 2 – Explore

• Describe the features of a parcel locker and encourage the students to brainstorm

how to develop the features.

5 minutes

Section 3 – Explain

• Instruct students to use mind maps to analyze the project and prepare them for

the Elaborate session.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Allow students time to test their projects. Have them think about the relationship

between parcel lockers and data as well as the use of data in everyday life.

© education.makeblock.com 68

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• List the ways to collect parcels and explain the application of parcel lockers.

Procedures:

• Ask: How do you receive parcels?

• Give your answer: We can receive a parcel at home, pick it up at a specified collection point, such as a

guard booth and a store, or collect it from a parcel locker nearby.

• Ask: If nobody is at home, which will be your choice? Why?

• Summarize: When nobody is at home, having the parcel delivered to a parcel locker will be the best

choice. Think about it. If the courier just drops the parcel at the door, it may get lost. If the parcel is

sent to a collection point like a store, other people may mistakenly take it. A parcel locker can avoid

such problems because only the recipient with the one-off pickup code can open the locker into which

the courier put the parcel. Also, a parcel locker works 24/7.

© education.makeblock.com 69

Section 2 – Explore

[5 minutes]

Objective:

• Describe the features of a parcel locker and encourage the students to brainstorm how to develop the

features.

Procedures:

• Ask: After the courier puts a parcel into the parcel locker, how does the recipient know the parcel

arrived and is ready for pick up?

• Give your answer: The recipient will receive a text message carrying a pickup code. Then the recipient

needs to go to the parcel locker and enter the pick-up code. A door will open if the recipient enters the

code correctly.

© education.makeblock.com 70

Section 3 – Explain

[5 minutes]

Objective:

• Instruct students to use mind maps to analyze the project and prepare them for the Elaborate session.

Procedures:

• Demonstrate how the parcel locker works.

• Work with students to analyze what features a parcel locker should have and draw a mind map.

© education.makeblock.com 71

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills

Procedures:

• Connect CyberPi to mBlock.

• Open the preset program file.

• Notify recipient:

o Send pick-up code: When a parcel is delivered to a parcel locker, a pickup code is sent to

CyberPi. Create a variable "Pick-up Code" to store the code, making it easier for the program to

check whether the input code is correct.

o Use this block to display the parcel information:

Category Coding block Feature

This block displays a message on

CyberPi’s screen. Type in the text

you want to display.

o NOTE:

① Generate pseudorandom numbers as pick-up codes. The example program

generates 4-digit codes. If you want 5-digit codes, limit the range to 10,000 to 99,999.

② Compare print () and print () and move to a new line.

© education.makeblock.com 72

o Pickup reminder: If the parcel isn’t collected after a certain period, a pick-up reminder will be

sent to the recipient. This setting improves the efficiency of the parcel locker. Set two

timeframes so that a reminder will be sent if a parcel isnot collected after 24 hours and 48

hours.

o NOTE: To save time, use 24 seconds to represent 24 hours in this project.

• Pick up parcel

Category Coding block Feature

A sensing block makes a sprite ask a question

on the stage and waits for you to input an

answer.

This block stores the answer you input.

o After receiving the pickup code, tap the "Pick Up" button and enter the code.

© education.makeblock.com 73

o If the pick-up code is correct, a door will open, and a message "Parcel taken out" will be sent to

CyberPi.

 Parcel locker sprite:

 CyberPi:

o After taking out the parcel, click the door to close it.

© education.makeblock.com 74

Section 5 – Evaluate

[5 minutes]

Objective:

• Allow students time to test their projects. Have them think about the relationship between parcel

lockers and the data as well as the use of data in everyday life.

Procedures:

• Invite students to present their work.

• Ask: How are data used in a parcel locker system? What are the roles of data in the system?

o Possible answer: The pick-up code generated by the program and the one entered by a

recipient are all data. The system needs data to verify the identity of recipients.

© education.makeblock.com 75

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Identify the roles and importance of data in intelligent vehicles.

• Describe the working principles of autonomous lane keeping and Internet-based navigation systems in

intelligent vehicles.

• Use mind maps to visualize how an intelligent vehicle project should be.

• Include functions in programs to simulate autonomous lane keeping and an Internet-based navigation

system.

 Key Focus

• Role of data in intelligent vehicles

• How to control intelligent vehicles

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 5-2 Create a computational artifact for practical intent, personal expression, or to
address a societal issue.

ISTE 3d
Students build knowledge by actively exploring real-world issues and
problems, developing ideas and theories and pursuing answers and solutions.

Lesson 7

Intelligent Vehicles

© education.makeblock.com 76

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

For Students:

• Able to write programs with coding blocks

• Prior knowledge of CyberPi’s major features

© education.makeblock.com 77

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Introduce intelligent vehicles and their applications to students. Have them

understand the difference between intelligent vehicles and conventional vehicles.

And encourage students to consider the roles of data in intelligent vehicles.

5 minutes

Section 2 – Explore

• Show students what the project should be like and encourage them to consider

how to achieve the effects to improve students' independent and creative

thinking skills.

5 minutes

Section 3 – Explain

• Have students use mind maps to visualize functionality analyses, preparing them

for later coding session.

20 minutes

Section 4 – Elaborate

• Give students freedom to explore further so that they can enhance their

programming skills.

5 minutes
Section 5 – Evaluate

• Have students think about the relation between data and intelligent vehicles.

© education.makeblock.com 78

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Introduce intelligent vehicles and their applications to students. Have them understand the difference

between intelligent vehicles and conventional vehicles. And encourage students to consider the roles

of data in intelligent vehicles.

Procedures:

• Introduce intelligent vehicles: Intelligent vehicles adopt intelligent driving systems, which include

Internet-based navigation, autonomous driving and human intervention.

Internet-based navigation systems help cars decide the best routes to their destinations.

Autonomous driving technologies detect road scenes, including the status of traffic lights, road signs

and more, based on which the vehicles make decisions.

The vehicle may call for human intervention under certain conditions, requiring the driver to take over

command and make decisions based on the instructions given by the intelligent system.

• Summarize the practical application: Countries around the world invest plenty of resources in

developing intelligent vehicles. That's not only because intelligent vehicles can make people's life more

convenient, but also reduces safety risks by detecting road scenes and autonomously avoiding

obstacles. In addition, the development of intelligent vehicles can significantly reduce energy

consumption and greenhouse gas emissions, eliminate traffic congestion, and improve social efficiency.

• Ask: The use of data is essential in developing intelligent driving systems. Please bear this question in

mind throughout the following sessions: How do lane-keeping and navigation use data?

Have students note down the question on paper or on the computer so that they can keep thinking

about it.

© education.makeblock.com 79

Section 2 – Explore

[5 minutes]

Objective:

• Show students what the project should be like and encourage them to consider how to achieve the

effects to improve students' independent and creative thinking skills.

Procedures:

• Introduce the project: In the picture, we see an intelligent vehicle. People could just say where to go

and the vehicle will receive the oral command and start planning the best route to the destination.

Without human intervention, the vehicle just automatically drives to the destination.

• Ask: How do we use mBlock to make an intelligent vehicle? What intelligent features should the vehicle

have?

• Summarize: Based on your answers, the functionalities could be categorized as:

o Lane-keeping

o Positioning

© education.makeblock.com 80

Section 3 – Explain

[5 minutes]

Objective:

• Have students use mind maps to visualize functionality analyses, preparing them for later coding

session.

Procedures:

• Show students what an intelligent vehicle project should be like.

• Work with students to make a mind map to visualize the functionalities.

© education.makeblock.com 81

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students freedom to explore further, so that they can enhance their programming skills.

Procedures:

• Add the extension Cognitive Services in mBlock to give your vehicle the speech recognition ability.

• Set up the starting point:

• Retrieve destination information:

o To recognize the oral commands, we need the speech recognition coding block below.

o Add the Cognitive Services extension to find this block:

Coding block Feature

Use this block to recognize speech in

English.

© education.makeblock.com 82

o The vehicle receives the recognition result:

 Note: The event block "when space key pressed" is used to trigger the program for

detection. Students can use other events to trigger the program.

• Mark the destination with a map pin

o Set up the initial status:

Hide the map pin before the vehicle receives the destination information.

 Note: Use "go to front layer" to locate the map pin layer at the headmost of other

buildings.

o Add an animated effect:

Program the map pin to show up with a bouncing effect, after the vehicle gets the destination

information.

 To quickly recall the code in the program, create a function named "show up" that

defines a bouncing effect:

© education.makeblock.com 83

 Input "show up" to name the function. Define the function as shown:

o Map pin shows up at the destination after receiving the destination information: When the

vehicle receives the oral command, it sends the destination information to the map pin.

Recall the function "show up" to program the map pin to appear as needed.

© education.makeblock.com 84

Logic Example program (Vehicle) Example program (Map pin)

If the destination is the

hospital,

then send a message to

the map pin to have it

appear around the

hospital.

If the destination is the

grocery,

then send a message to

the map pin to have it

appear around the

grocery.

 Note: Use the hospital and convenient store as examples. Have students program their

vehicles to get home, to a tower, to school, and other destinations.

• The vehicle automatically drives to the destination after it receives the destination information. The

vehicle should have these abilities:

o Autonomous lane-keeping: The vehicle can stay in its lanes when driving

o Recognizing destinations: Stops at destinations

• Autonomous lane-keeping:

o To ensure the vehicle can automatically drive to destinations, program the vehicle to detect

road scenesand stay in its lanes.

o Use color-sensing blocks to help the vehicle detect road scenes so that the vehicle can

automatically stay in its lane while driving. The color picker is used to precisely define the color

values of the vehicle and lanes.

© education.makeblock.com 85

o Detect roads

 To ensure the vehicle stays in its lanes, we use Sensing blocks. The vehicle is green and

the lane is dark grey. Use the script below to detect whether the two colors touch each

other:

o Recognize corners

 Program the vehicle to perform a turn when coming to a corner.

 To detect whether to turn left or right, add a sensor to the left and one to the right of

the vehicle as shown below.

 Open the vehicle sprite's Costumes. Look at the two sensors at the front. The left sensor

is light blue, while the right sensor is dark blue.

© education.makeblock.com 86

o Decide whether to perform a turn

 If the left sensor touches the color outside the lane, then it's time for the vehicle to turn

right.

 If the right sensor touches the color outside the lane, then it's time for the vehicle to turn

left.

o Create a function named "drive"

Create a function named "drive" to include the following reusable code: Keep driving and

decide whether to turn left or right.

© education.makeblock.com 87

Slides 32–33

• Recognize destinations

o Destination - hospital

o Destination – grocery

© education.makeblock.com 88

o Note:

 Use hospital and grocery as examples. Have students program their vehicles to get to a

tower, to school and home.

 Rely on "distance" to decide whether the vehicle reaches the destinations. For instance,

the car stops when the distance between it and the destination is 55. "55" is only for

reference. Have students set up the distance value as appropriate.

© education.makeblock.com 89

Section 5 – Evaluate

[5 minutes]

Objective:

• Have students think about the relation between data and intelligent vehicles.

Procedures:

• Have 1 or 2 students to share their intelligent vehicle design.

• Bring students back to the previous question, have them discuss and answer: How do you monitor lane-

keeping and navigation using data? (based on the projects completed today)

© education.makeblock.com 90

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Explain how a bus tracker works

• Gather real-time bus information and calculate the expected arrival time at the selected destination

• Use mind maps to analyze how to develop a bus tracker

• Program to make a bus tracker project

 Key Focus

• Understanding how a bus tracker works

• Estimating bus arrival time

 Content Standards

Type Indicator Standard

K12 CS

Framework
Practice 5-2

Create a computational artifact for practical intent, personal expression, or to

address a societal issue.

CSTA 2-AP-11
Create clearly named variables that represent different data types and
perform operations on their values.

ISTE 3d
Students build knowledge by actively exploring real-world issues and
problems, developing ideas and theories and pursuing answers and solutions.

Lesson 8

Bus Tracker

© education.makeblock.com 91

 Preparation

For the Teacher:

• A desktop or laptop with mBlock installed

• A CyberPi kit

For Students:

• Basic knowledge of CyberPi

• Able to display texts, play sounds, and light up LEDs with CyberPi

© education.makeblock.com 92

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Describe the benefits of bus trackers with real-life examples. Introduce Intelligent

Bus System and explain what roles data play in the network.

5 minutes

Section 2 – Explore

• Describe an application scenario to students and encourage them to consider the

features of the bus tracker.

5 minutes

Section 3 – Explain

• Work with students to draw a mind map and analyze the features of the bus

tracker. Prepare students for the Elaborate session.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Encourage students to present their projects and to find out more benefits of the

Intelligent Bus System.

© education.makeblock.com 93

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Describe the benefits of bus trackers with real-life examples. Introduce Intelligent Bus System and

explain what role data plays in the network.

Procedures:

• Ask: Have you ever got frustrated with a long wait for a bus or when you hurried to the bus stop, only

to find the bus just departed? Can you think off any solutions for this problem? So that the next time

you get to the bus stop in time.

• Give your answer: If we have real-time bus information, we can adjust our schedule accordingly. Bus

riders had to estimate arrival times in the past. Fortunately, we now can track real-time bus

information with our phones.

• Ask: How do our phones track the bus locations and arrival times?

• Summarize: The technological development drives the development of an Intelligent Bus System.

Travelers can view real-time bus information including bus locations, the number of passengers

onboard, and traffic with the system. They can adjust their plans according to the bus location and

estimated arrival time.

© education.makeblock.com 94

Section 2 – Explore

[5 minutes]

Objective:

• Describe an application scenario to students and encourage them to consider the features of a bus

tracker.

Procedures:

• Ask: You commute between your home and school by bus every day. As a frequent traveler, what

information is most important to you? And how do you get the information?

• Summarize: I heard some of you mentioned the real-time bus location and the arrival times at the stop

near your home or school. You may also want to receive notifications when the bus is about to arrive.

© education.makeblock.com 95

Section 3 – Explain

[5 minutes]

Objective:

• Work with students to draw a mind map and analyze the features of the bus tracker. Prepare students

for the Elaborate session.

Procedures:

• Demonstrate how the bus tracker works.

• Work with students to summarize the features of a bus tracker application.

• Show students a mind map.

© education.makeblock.com 96

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Open the demo program. As preset, when the green flag is clicked, the bus starts moving along the

circle line.

• Connect CyberPi to mBlock and select the Live mode.

• Select a boarding stop:

o The circle line starts at the Tiny Park and travels clockwise. The Tiny Park is Stop 1, Home Stop

3, and Maker School Stop 7.

© education.makeblock.com 97

o Create a variable "boarding stop" to record the number of the stop where the passenger is

currently at.

Logic Example program (CyberPi)

When program starts up

 Set boarding stop to 0

When button A pressed

 Select home as boarding stop

 Receive real-time bus location

When button B pressed

 Select school as boarding stop

 Receive real-time bus location

o NOTE:

 When CyberPi starts up, no boarding stop is selected yet. So, set the variable "boarding

stop" to 0.

 In the preset program, the variables "home" and "school" are set to 3 and 7

respectively.

• Receive real-time bus information

• Distance to boarding stop

o In the preset program, a variable "bus location" is created to record the stop where the bus is

currently at.

o The numbers 1 to 8 represent the eight stops on the circle line.

© education.makeblock.com 98

o Three relationships between "boarding stop" and "bus location":

 boarding stop > bus location—Bus still not coming

 boarding stop < bus location—Bus already left. Wait for the next one

 boarding stop = bus location—Bus arrives

o Prompt notification:

• Estimated arrival time:

o It takes three minutes for the bus to move from a stop to the next.

o Estimated arrival time = Distance to boarding stop × 3. For instance, if the bus is two stops

away from the boarding stop, the estimated arrival time will be six minutes.

o Display estimated arrival time:

• Send bus arrival notification

© education.makeblock.com 99

• Automatic updates on bus information:

o After a passenger sets the location, the bus information will be automatically updated every

time the bus arrives at a stop. The updates stop when the bus reaches the stop where the

passenger is at.

o Select the sprite "Bus" and view the preset programs for the sprite. The custom block "1-2"

means the bus travels from Stop 1 to Stop 2. Other custom blocks, like "2-3", comply with the

same logic.

o To receive real-time bus information, add a broadcast () block after the initial stop and each

custom block. Name the broadcast message as "real-time bus location".

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 100

Objective:

• Encourage students to present their projects and to find out more benefits of the Intelligent Bus

System.

Procedures:

• Invite one to two volunteers to present their bus trackers to the class.

• Ask students to discuss this question: In what aspects can you improve the local bus system?

• Have one to three students present their conclusion.

© education.makeblock.com 101

Subject Area: Computing Level: Introductory Time Frame: 45

minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Describe basic game design principles and explain the mechanics of a game

• Use mind maps to analyze what features the game Colors Hunter should have

• Use variables to make the game – Colors Hunter

 Key Focus

• Understanding some basic game design principles, and analyzing the mechanics of a game

• Using mind maps to visualize features the game should have, and program the game based on the mind

map

 Content Standards

Type Indicator Standard

K12 CS
Framework

Practice 3-1
Create a computational artifact for practical intent, personal expression, or to
address a societal issue.

CSTA 2-AP-11
Create clearly named variables that represent different data types and
perform operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

Lesson 9

Colors Hunter

© education.makeblock.com 102

 Preparation

For the Teacher:

• A desktop or laptop with mBlock installed

• A CyberPi kit

For Students:

• Basic knowledge of how sensors work

• With experience in block-based coding, and able to apply variables

© education.makeblock.com 103

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Have students figure out what phases a game often has, and let them categorize

these phases to introduce them to the game design process.

5 minutes

Section 2 – Explore

• Show students how the game works, and encourage them to consider how to turn

their ideas into reality so that they can develop their independent thinking skills.

5 minutes

Section 3 – Explain

• Work with students to analyze the game mechanics using a mind map, preparing

them for the later programming activities.

20 minutes

Section 4 – Elaborate

• Give students freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Ask students to try the game they just created, and have them continue to

practice game design.

© education.makeblock.com 104

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Have students figure out what stages a game often has, and let them categorize these stages to engage

them in the game design process.

Procedures:

• Ask students to think about how many phases most games often have.

• Summarize the answers:

Considering the gaming experience, we could divide a game into 3 phases: Opening, Middlegame,

Endgame.

• Say: Suppose you are a game designer, so your responsibility is to design an engaging game. You have

many things to consider when you're designing a game:

(1) Task: What's the task that a player needs to complete?

(2) Controls: How does a player interact with the game?

(3) Outcome: What outcome will the player get? How is this outcome reached?

• Use specific game examples for analysis.

• Ask: Pick a game that most people are familiar with. Analyze its tasks, controls and outcome.

© education.makeblock.com 105

Section 2 – Explore

[5 minutes]

Objective:

• Show students how the game works and encourage them to consider how to turn their ideas into

reality. To help them develop their independent thinking skills.

Procedures:

• Invite students to try the Colors Hunter game.

• Ask: If you are a game designer, what do you think the task and control methods are? And what's the

outcome?

• Summarize:

Task: Follow CyberPi's command to select a light color accordingly.

Control method: Use the joystick to select a color.

Outcome: When the 30-second countdown stops, the game is over. There's no win or lose condition.

© education.makeblock.com 106

Section 3 – Explain

[5 minutes]

Objective:

• Work with students to analyze the game mechanics using a mind map, preparing them for the later

programming activities.

Procedures:

• Work with students to analyze what features the game must have.

• Show students the mind map.

© education.makeblock.com 107

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students freedom to explore further so that they can enhance their programming skills.

Procedures:

• Connect CyberPi to mBlock.

• Press the button to start the game:

o Add a prompt to indicate the start of the game.

o Press the button, and the game starts:

 Note:

① The variable "score" is created to store the scores. Make sure the scores are cleared

before the game begins.

© education.makeblock.com 108

② The �mer tracks the gaming �me, and should be reset to zero at the very beginning

of the game.

o The system randomly selects a target:

 CyberPi will randomly display one of the three words, "red", "yellow" and "blue", on its

screen each single time.

 Use a variable "target" in the program to simulate a test in which a target color is

randomly given each time.

 For example, when "target" equals 1, the word "red" appears on the screen; when

"target" equals 2, the word "yellow" appears on the screen; when "target" equals 3,

the word "blue" appears on the screen.

 Note:

① Use the "forever" block to keep refreshing the proposed targets;

② Change the value in the "wait () secs" to adjust the level of difficulty.

© education.makeblock.com 109

• Set up changes:

o To make the game more challenging and engaging, it's better to add some changes.

o For example, program the texts to appear in random colors on the screen.

• Press the joystick to confirm the color. After CyberPi gives a target color, the player is expected to

pinpoint the target among changing colors using the joystick.

o Keep colors changing:

 Create a variable named "LightColor" to change the colors of the lights. The variable is

used to decide whether the player's selection is correct as well.

© education.makeblock.com 110

 Note: Use the block "wait (1) sec" to allow the player time to complete his or her

selection. The player faces greater challenges when the interval time is shorter.

o Press the joystick to confirm color:

 Compare the target and the current light color

© education.makeblock.com 111

• Scoring system: Create a variable "score" to store the points that the player wins. The score increases

by 1 when the player's selection matches the target.

o Note: Use sounds and texts to let the player know whether he or she picks the correct color.

• Result: The countdown starts when the game begins. After 30 seconds, the game stops and shows the

final score.

© education.makeblock.com 112

 Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 113

Objective:

• Ask students to try the game they just created and have them continue to practice game design.

Procedures:

• Have 2 students compete to see who gets the highest scores

• Have students create a simple game based on the principles mentioned today:

task, controls, and outcome.

© education.makeblock.com 114

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Explain the roles of data in designing game mechanics and develop a simple game

• Use variables and lists to establish rules for an opposite game and write programs to decide the game

results

• Draw mind maps to analyze how to develop an opposite game

• Improve reaction time and reverse thinking skills by designing and developing the game

 Key Focus

• Using variables and lists to establish rules for an opposite game and deciding the game results

 Content Standards

Type Indicator Standard

CSTA 2-AP-11
Create clearly named variables that represent different data types and perform
operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

Lesson 12

Opposite Game

© education.makeblock.com 115

 Preparation

For the Teacher:

• A desktop or laptop with mBlock installed

• A CyberPi kit

For Students:

• Understanding on how to display images and text on CyberPi's screen

• Using variables and lists

© education.makeblock.com 116

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Engage students in a fun warmup activity, the Opposite Game. Encourage them to

think about how the decision system of the game works.

5 minutes
Section 2 – Explore

• Have students brainstorm how a game decides whether a player wins.

5 minutes
Section 3 – Explain

• Work with students to draw a mind map and analyze the game mechanics,
preparing them for the Elaborate session.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Improve students’ engagement and encourage them to complete the project by

challenging them to the opposite game.

© education.makeblock.com 117

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Engage students in a fun warmup activity, the Opposite Game. Encourage them to think about how the

decision system of the game works.

Procedures:

• Warmup activity—Opposite Game

Ask students to do the opposite of your commands. For example, when you say "look up", students should

look down; when you say "lift your right hand", they should lift their left hand. Tell students the correct

action after they perform an action.

• Ask: The opposite game can improve reaction time and concentration. Now, I want you to recap how we

decided whether an action was correct.

• Summarize: In the opposite game, every command has a designated action, like stand up and sit down. If

you do the opposite of the command, then you do the correct action. Many games adopt a similar method

to decide the results, comparing players' actions with the preset designated actions. If a player's actions

match the actions set in the system, then the player wins the game.

© education.makeblock.com 118

Section 2 – Explore

[5 minutes]

Objective:

• Have students brainstorm how a game decides whether a player wins.

Procedures:

• Introduce the task: We’re going to use the same decision mechanism to develop a simple opposite game.

• Ask: How do we decide whether a player wins or loses the game?

• Summarize: When a command comes up, the player needs to perform an action. If the player does the

opposite of the command within the given time, then the player wins the game. If the player fails to do the

opposite or the time is up, then the player loses the game.

© education.makeblock.com 119

Section 3 – Explain

[5 minutes]

Objective:

• Work with students to draw a mind map and analyze the game mechanics, preparing students for the

Elaborate session.

Procedures:

• Work with students to analyze the game mechanics.

• Show the mind map to students.

© education.makeblock.com 120

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Open mBlock, add CyberPi in Devices, connect CyberPi to mBlock, and select Live mode.

• To make it easier to check whether players' actions match the designated ones, create a list "command" to

store the commands.

o Add four commands to the list, "up", "down", "left", and "right".

• Press the button to start a game:

o The game begins:

 NOTE:

① Use the variable "score" to record a player’s scores.

② Use the variable "�me" to set the �me limit. Set "�me" to 2. If players fail to do an

action in 2 seconds, they lose the game.

o Display commands: The game starts when the button is pressed. CyberPi should display a command

as the game starts.

© education.makeblock.com 121

 NOTE:

① To make sure players are clear about which command to follow, clear the screen every

time before displaying the next command.

② Use the variable "CommandNo" to match the number of each item in the "commands"

list. As the list includes four commands, pick a random number between 1 and 4 to display

the commands randomly.

③ Include a broadcast () and wait block in this script to report the decision about whether

the player makes the right action before the next command comes up.

• Push the joystick to the direction opposite to the command:

o If the player does the opposite of the command within the given time, then the player wins the

game.

o If the player does the same as the command or if the time is up, then the player loses the game.

© education.makeblock.com 122

o NOTE:

① The example program includes the decision system for the "up" command. Complete the

programs for the rest commands. When "CommandNo" equals 1, the command is "up". If the player

manages to push down the joystick within the given time, then the player makes a correct action

and wins the game. If the player pushes the joystick to other directions or if the time is up, the player

loses the game.

② If the player's ac�on is correct, stop the script and display another command. If the player’s

action is wrong, the game is over.

③ To check whether a player performs the ac�on within the given �me, compare the variable

"time" with the timer. When the timer value is greater than the maximum value "time", it means the

player exceeds the maximum time, and the decision system will stop working.

• Scoring system

o Action correct, earn one point: When the player's action is correct, "score" increases by 1, and

CyberPi's LEDs light up green.

© education.makeblock.com 123

o Display next command and turn off LEDs: When the player's action is correct, CyberPi displays the

next command. The screen should be cleared and the LEDs turned off before CyberPi displays the

next command.

• Action wrong, game over: When the player's action is wrong, the game ends. CyberPi will display the score,

and its LEDs will light up red.

© education.makeblock.com 124

• Results: When the player does a wrong action, the game ends.

o Make the game more challenging and more interesting.

o For example, set up the scoring system based on the levels of difficulty. In the harder version,

players have less time to react but earn more points for a correct action.

 NOTE:

① The example program provides two levels of difficulty. Build on the example program to

diversify the levels of difficulty.

© education.makeblock.com 125

Points Time Points Time

0~4 2 15~19 0.5

5~9 1.5 20~24 0.3

10~14 1 25~∞ 0.2

② Run the script above as soon as the game begins.

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 126

Objective:

• Improve students' engagement and encourage them to complete the project by challenging them to the

opposite game.

Procedures:

• Activity 1: Divide students into groups and have them play the game to see which group finishes the most

rounds.

• Activity 2: Invite five to six students to compete in front of the class.

o Tip: Pick one of the activities according to class performance. To ensure fair competition, invite

other students to examine the players' programs.

© education.makeblock.com 127

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Identify the role of data in showing game results, and the importance of scores and rankings in a game.

• Clone sprites and program the clones to perform tasks.

• Calculate the score by rounding the quotient to an integer or reporting the remainder.

 Key Focus

• Understanding of the role of data in showing game results, and the importance of scores and rankings in a

game.

• Cloning sprites and programming clones to perform tasks.

• Performing calculations on the score by rounding the score to an integer or reporting the remainder.

 Content Standards

Type Indicator Standard

CSTA 2-AP-11
Create clearly named variable that represent different data types and perform
operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 11

 Catch Fish Carnival Game I

© education.makeblock.com 128

 Preparation

For the Teacher:

• A desktop or laptop with mBlock installed

• A CyberPi kit

For Students:

• Practical knowledge on how to change the sprites' costumes and movements, and use broadcasts.

• Understanding of the basic principles of game design.

© education.makeblock.com 129

 Agenda (40~45 minutes)

Duration Content

5~10 minutes

Section 1 – Engage

• Have students consider the importance of scores and rankings in a game. Use

some well-known games as examples, helping students understand the role of

data in showing the results of a game.

5 minutes

Section 2 – Explore

• To help students build an overall picture of the project, ask them to discuss and

summarize the game rules after they try the game.

5 minutes

Section 3 – Explain

• Have students analyze the mechanics of the game through a mind map, preparing

them for the later coding activities.

20 minutes

Section 4 – Elaborate

• Give students freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Have students test their games and compete with each to see who wins the

highest score.

© education.makeblock.com 130

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Have students consider the importance of scores and rankings in a game. Use some well-known games

as examples, helping students understand the role of data in showing the results of a game.

Procedures:

• Ask: Players often see the result at the end of a game. The result could be a score, stars, etc. Imagine

how the player will react if he or she can't see any results at the end of a game.

• Summarize: Without the results, the player may be confused about how they did, so the gaming

experience could be poor. A good game gives the player a sense of accomplishment, and it leaves much

room for the player to pursue higher scores and rankings and challenge more difficult levels.

© education.makeblock.com 131

Section 2 – Explore

[5 minutes]

Objective:

• Introduce the project to students so that they can have an overall picture of it and ask them to

summarize the game rules after a discussion with partners.

Procedures:

• Invite 1 or 2 students to try the Catch Fish Carnival game.

• Ask students to have a discussion:

1) What's the goal of the game?

2) How does a player earn points?

3) How is the result shown?

• Summarize: Press the Start button to begin. The score increases by 1 each time you catch a fish. You

have 30 seconds and when the time is up, the final score will be shown.

© education.makeblock.com 132

Section 3 – Explain

[5 minutes]

Objective:

• Have students analyze the mechanics of the game through a mind map, preparing them for the later

coding activities.

Procedures:

• Work with students to summarize the main functions of the project.

• Work with students to create a mind map to clarify what features the project needs.

© education.makeblock.com 133

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students freedom to explore further so that they can enhance their programming skills.

Procedures:

• Ask students to open the example program file. As defined by the preset program, when the green flag

is clicked, the start screen appears.

• Press the Start Game button to begin:

o The game starts:

 NOTE:

① Create a variable "score" to record game scores.

② Create a variable "num_fish" to record the number of fish on the screen.

o Multiple fish randomly swimming:

 Introduce cloning: To create multiple fish swimming on the screen, we need to clone

sprites. Simply speaking, cloning is to duplicate multiple identical sprites. Cloning helps

reduce repetitive coding while at the same time creating identical sprites.

© education.makeblock.com 134

Coding block Feature

Use this block to create a clone of a specified sprite.

The clone generated completely overlaps the original

one. Select a sprite from the drop-down list to clone.

When a sprite is cloned, this hat block runs in the newly

made clone.

This block deletes the clone it runs in and stops all its

scripts.

 When the game begins, 10 fish appear, and each of them swims around on the

stage.

 NOTE:

① Use the block repeat () to decide the number of clones you need to create.

② Use random numbers to set up the fish, including their location, swimming direction

and speed.

• Press the arrow keys to move the fishing net:

© education.makeblock.com 135

o NOTE:

① The example script above programs the fishing net to move upward when the ↑ key is

pressed.

② Similarly, complete the programs for the rest arrow keys. Refer to the table below:

Arrow keys Point in direction Coordinate Increase by

↑

Y 10

↓

Y -10

←

X -10

→

X 10

③ Modify the value in the block change x/y by() to set up the speed at which the fishing net is

moving. A higher absolute value means a higher moving speed.

• Press the space key to scoop the fish:

© education.makeblock.com 136

• Define the scoring system: the score increases by 1 each time fish is scooped:

o NOTE: The program decides whether any fish is scooped successfully by detecting whether the

fish touches the fishing net or not.

• The fish scooped disappears: When the fish is scooped, it disappears from the screen.

o NOTE: To make the fish disappear, just delete the sprite.

• The 30-second countdown starts the moment the game begins. After 30 seconds, the game is over.

• The Game Over interface pops up when the game comes to an end. And we can see the final scores

and a trophy on it. The fishing net is hidden.

o Hide the fishing net:

© education.makeblock.com 137

o Show a trophy:

o Show the final score:

o NOTE:

① For the sprites "Ones" and "Tens", the number reported could be 0 to 9, and the numbers

from 1 to 9, or 0 represents costumes 1-10 respectively.

② To calculate the number in tens place: Divide the score by 10 and if the result is a decimal

number, then use the (floor) of () block to round down the result. For example, when 36 is

divided by 10, the result is 3.6. Round the result down to 3.

③ To calculate the number in ones place: Divide the score by 10, and the remainder is the

number in ones place. For example, when 36 is divided by 10, the remainder is 6 so the number

in ones place is 6.

• Refill the pond with fish

o If the player scoops all the fish on the stage, then nothing could be found on the stage for a

while.

o To ensure the stage has enough fish, write programs to enable this: more fish is added onto the

stage whenever the total number of fish on the stage is less than 10.

© education.makeblock.com 138

Section 5 – Evaluate

[5 minutes]

© education.makeblock.com 139

Objective:

• Have students test their programs and games and compete with each to see who wins the highest

score.

Procedures:

• Ask students to play their game with their desk mate or partner.

• Have 1-3 students share their experience and ask them what pros and cons the game has.

© education.makeblock.com 140

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Identify the concept of Motion-Controlled Games and what features they have.

• Create a CyberPi controller with which they can change the movements of sprites.

• Track the operational data, and decide the result based on the data records.

• Program "Catch Fish Carnival Game II" in which players use CyberPi to interact with the game.

 Key Focus

• Using CyberPi as a controller to move the sprites

• Tracking operational data in a game, and decision-making concerning the results based on the data records

 Content Standards

Type Indicator Standard

CSTA 2-AP-11
Create clearly named variable that represent different data types and perform
operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 12

Catch Fish Carnival Game II

© education.makeblock.com 141

 Preparation

For the Teacher:

• A desktop or laptop with mBlock installed

• A CyberPi kit

For Students:

• Already know the role of data in showing game results, and the importance of scores and rankings in a

game

• Already know the rules of Catch Fish Carnival Game, and completed the Catch Fish Carnival Game I project

© education.makeblock.com 142

 Agenda (40~45 minutes)

Duration Content

5~10 minutes
Section 1 – Engage

• Introduce students to the concept of motion-controlled games.

5 minutes

Section 2 – Explore

• Have 1 or 2 students try the game, and ask the rest to observe while they're

playing. Ask students to figure out what's new about the game compared to Catch

Fish Carnival Game I.

5 minutes

Section 3 – Explain

• Have students use mind maps to analyze the mechanics of the game and organize

their thoughts, preparing them for the later coding activities.

20 minutes

Section 4 – Elaborate

• Give students freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Have students test each other's programs and games and compete to see who

wins the highest score.

© education.makeblock.com 143

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Introduce students to the concept of motion-controlled games.

Procedures:

• Explain: Motion-controlled games provide a new way for players to interact with games. Players get

more immersed in games by physically interacting with games. Besides, this type of games requires

players to move their body, so people have a chance to relax and get some exercise.

© education.makeblock.com 144

Section 2 – Explore

[5 minutes]

Objective:

• Have 1 or 2 students try the game and ask the rest to observe while they're playing. Ask students to

figure out what's new about the game compared to Catch Fish Carnival Game I.

Procedures:

• Introduce: Last time, we interacted with the Catch Fish carnival game via a keyboard. Today, we're

going to upgrade the game.

• Pick 1 or 2 students to try the game.

• Start a class discussion: Compare the upgraded version with the previous one. Are there any

differences?

• Summarize: The upgraded version adopts a new control method which turns it into a motion-

controlled game. Players interact with the game using the CyberPi. When the game is over, it gives you

a star ranking and scores based on your success rate. A higher success rate can earn you a higher

ranking and more points.

© education.makeblock.com 145

Section 3 – Explain

[5 minutes]

Objective:

• Have students use mind maps to analyze the mechanics of the game and organize their thoughts,

preparing them for the later coding activities.

Procedures:

• Work with students to analyze what features Catch Fish Carnival Game II should have.

• Work with students to draw a mind map.

© education.makeblock.com 146

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students freedom to explore further so that they can enhance their programming skills.

Procedures:

• Ask students to open the program file they previously created. If any of the students didn’t complete

the program the previous lesson, send them yours.

• Add the device CyberPi. Connect CyberPi to mBlock, and switch to Live mode.

• Press the button to start the game

o Make sure the data is cleared before the game starts.

o The game decides the result based on the player's success rate. Create a variable to track the

scooping times.

o NOTE:

Add the coding block to the previous script that's written to program the "Start" button to

refresh data.

© education.makeblock.com 147

• Wave CyberPi to move the fishing net:

o Introduce the motion-sensing block needed to turn CyberPi into a controller:

Coding block Feature

Use this block to move the sprite with

CyberPi. If you wave CyberPi at the same

speed, then the sensitivity will determine

the speed of the sprite. A higher

sensitivity means a higher speed.

o Use CyberPi to move the fishing net:

• Press the joystick to scoop the fish.

• When the joystick is pressed, the scooping count is increased by 1.

• When the fish is successfully scooped, the score goes up by 1: The scoring system is the same with

"Catch Fish Carnival Game I" so, the script for this part doesn’t need modification.

© education.makeblock.com 148

• Game is over when countdown stops

• "Game Over" interface

o Ranking: The game uses a star rating system and reward points to measure the player's

performance based on the success rate. To raise the threshold, the player will be rated on a

scale of stars only when the scooping count exceeds 9.

o Success rate = number of fish scooped (score) / scooping count

o NOTE:

① The example above is the script for a 3-star rating.

② Refer to the following table to complete the programs for the whole star ra�ng system.

Success rate Star rating Reward points

90%~100% 3 stars 10

80%~90% 2 stars 6

70%~80% 1 star 2

© education.makeblock.com 149

0~70% None None

• Display the final score:

Add coding blocks to display the final score

• Have students test their program and consider any other effects they could add to the game.

• Program a progress bar to display the time left during the game

o NOTE:

The sprite "Progress Bar" has 30 costumes, so program the sprite to switch to another costume

ever second.

• Display real-time scores

© education.makeblock.com 150

o NOTE:

① During the game or when the game is over, the score is visually different. So have students

set up the position and size properly.

② Refer to the table below to set up the posi�on and size:

Sprite Position Size

Tens (x: -5, y: -5) 70

Ones (x: 70, y: -5) 70

© education.makeblock.com 151

Section 5 – Evaluate

[5 minutes]

Objective:

• Have students test each other's programs and games.Let them compete to see who gets the highest

score and wins.

Procedures:

• Have students invite their classmate or student partner to try their game and compete to see who gets

the highest score and wins.

• Invite 1-3 students to share their experiences and come up with pros and cons.

© education.makeblock.com 152

ai

Subject Area: Computing Level: Introductory Time Frame: 45 minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Explain why and how player characters are created

• Draw a mind map to analyze the essential features of Dodge the Bird

• Use variables and create a prototype of Dodge the Bird

 Key Focus

• Understanding the role and importance of data in player character selection

• Drawing a mind map to analyze the basic game effects of Dodge the Bird

• Completing the code for Dodge the Bird based on the mind map

 Content Standards

Type Indicator Standard

CSTA 2-AP-11
Create clearly named variable that represent different data types and perform
operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 13

Dodge the Bird I

© education.makeblock.com 153

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

For Students:

• Knowledge of how to use sensors

• Proficiency in block-based coding

• Knowledge of game design process and ability to design basic game mechanics

© education.makeblock.com 154

 Agenda (40~45 minutes)

Duration Content

5~10 minutes
Section 1 – Engage

• Introduce player character design and its importance in a game.

5 minutes

Section 2 – Explore

• Describe what the game is like to students and encourage them to brainstorm

how to develop the game.

5 minutes

Section 3 – Explain

• Work with students to draw a mind map and analyze the game mechanics,

preparing students for the Elaborate session.

20 minutes

Section 4 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5 minutes

Section 5 – Evaluate

• Allow students time to play the game that they’ve developed and have them

improve the game by considering user preference.

© education.makeblock.com 155

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Introduce player character design and its importance in a game.

Procedures:

• Ask: Some games offer different playable characters for players to choose from. Have you ever played any

such games?

o Encourage students to describe the games in detail. Guide them with questions like, "What’s the

name of the game?" and "What kind of player characters are available to choose from?"

• Summarize: Quite a few games allow players to choose the character they want to control.

• Ask: As a player, what do you think about this feature? What if you didn't have the option to choose a

character?

• Summarize: Providing different characters for players to choose from enriches a game and the player

experience but also sustains players' motivation and interest in playing the game.

© education.makeblock.com 156

Section 2 – Explore

[5 minutes]

Objective:

• Describe what the game is like to students and encourage them to brainstorm how to develop the game.

Procedures:

• Invite volunteers to try Dodge the Bird. Have them pay attention to the player character selection page.

• Ask: How did the player choose a character in Dodge the Bird? What’s the logic behind the player character

selection system? (Hint: if…then…) And describe how to play the game.

• Summarize: In the game, the player uses CyberPi's joystick to select a character. Push the joystick to the

right to select Witch and push the joystick to the left to select Jinnee. Let's take a look at the gameplay of

Dodge the Bird:

© education.makeblock.com 157

Section 3 – Explain

[5 minutes]

Objective:

• Work with students to draw a mind map and analyze the game mechanics, preparing students for the

Elaborate session.

Procedures:

• Work with students to analyze some features of Dodge the Bird.

• Instruct students to draw a mind map.

© education.makeblock.com 158

Section 4 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Connect CyberPi to mBlock and select the Live mode.

• Open the demo program file and go through it. The file includes preset programs for:

Sprite Feature

1. When the program starts running, the cloud floats.

1. When the green flag is clicked, the title and instructions appear.

2. When the game starts, the title and instructions disappear.

1. When the green flag is clicked, the sign "Start" appears.

2. When the game starts, the sign disappears.

1. When the game starts, birds fly from right to left on the stage.

2. When touching the player character, the bird disappears.

• Click the green flag to enter the startup interface:

o The startup interface has been preset with the following script:

© education.makeblock.com 159

• Define the initial status of a player character:

o Set the initial status of player characters, including location and direction.

o Create a variable "lives" and set it to 4. This setting gives a player character four lives. The variable

will be later used in the script to determine whether a player loses the game.

• Control characters:

o Characters move up/down: Tilt CyberPi to make a player character move up or down.

Tilted forward: Tilted backward:

o Use the Motion Sensing block in the table to detect which direction CyberPi is tilted to:

© education.makeblock.com 160

Coding block Feature

This Boolean block offers 6 options that
can be programmed to control different
effects.

o CyberPi tilted forward/backward:

o NOTE:

 Wrap the "tilted forward?" and "tilted backward?" blocks into the same forever block.

o Sprite moves:

 Prevent sprites from moving out of the stage

If a sprite keeps going up or down, it will disappear from the stage.

© education.makeblock.com 161

To avoid a sprite disappearing, add this sensing block to the script:

Write these scripts:

 Both scripts involve two change y by () blocks. Take the script on the left as an example.

When receiving "Up", the sprite's y-coordinate changes by 10. To prevent the sprite from

disappearing, type -10 in the second change y by () block. The second change y by () block

will offset the effect of the first one when the sprite touches the edge of the stage.

• Set up the penalty system

o If the sprite touches the bird, it loses a life:

o Add an animated effect to the life sprite:

 To show how many lives the player has left, add a 4-star sprite at the top left corner of the

stage. A star represents a life.

 The 4-star sprite only appears when the game starts. So, move the sprite to a specified

location but hide it at the very beginning.

© education.makeblock.com 162

 The 4-star sprite has four costumes and switches costumes to tell the player how many

lives are left. When "Lives" equals 0, the sprite disappears from the stage:

 NOTE: Here's just an example program. Complete the script to make the sprite change

costumes accordingly when "Lives" equals 3, 2, and 1.

• Result—game over:

© education.makeblock.com 163

• Game-over effect:

o Character falling: When the game is over, the player character stops flying and falls down. Use

point in direction () and glide () secs to x: () y: () to mimic the falling effect.

o Display "Game Over":

 A "Game Over" sign rises from the bottom to the center of the stage.

 Highlight the sprite "Signs" and click Costumes. One of the costumes is "Game Over".

 Make the "Game Over" sign appear at the center of the stage:

© education.makeblock.com 164

© education.makeblock.com 165

Section 5 – Evaluate

[5 minutes]

Objective:

• Allow students time to play the game that they’ve developed and have them improve the game by

considering user preferences.

Procedures:

• Invite two volunteers to try the game and compete to see who can survive the longest.

• Have students discuss: As a player, do you want other features or effects? What are they?

© education.makeblock.com 166

Subject Area: Computing Level: Introductory Time Frame: 45

minutes

Ages: 11~13 years old Year Groups: 6–8

 Objectives

By the end of class, students will be able to:

• Explain the roles of data in player character design

• Develop a game that allows players to choose a player character

• Draw a mind map to analyze the features of Dodge the Bird

• Use variables and complete the advanced version of Dodge the Bird

 Key Focus

• Understanding the role and importance of data in game design

• Drawing a mind map to analyze the basic effects of Dodge the Bird

• Completing the code based on the mind map

 Content Standards

Type Indicator Standard

CSTA 2-AP-11
Create clearly named variable that represent different data types and perform
operations on their values.

CSTA 2-CS-02
Design projects that combine hardware and software components to collect
and exchange data.

CSTA 2-AP-13
Design projects that combine hardware and software components to collect
and exchange data.

ISTE 5c
Students break problems into component parts, extract key information, and
develop descriptive models to understand complex systems or facilitate
problem-solving.

Lesson 14

Dodge the Bird II

© education.makeblock.com 167

 Preparation

For the Teacher:

• A laptop or desktop with mBlock installed

• A CyberPi kit

For Students:

• Knowledge of how to use sensors

• Proficiency in block-based coding

• Knowledge of game design process and ability to develop simple game mechanics

• A prototype of Dodge the Bird

© education.makeblock.com 168

 Agenda (40~45 minutes)

Duration Content

5 minutes
Section 1 – Engage

• Recap the previous lesson and clarify the objectives of this lesson.

10 minutes

Section 2 – Explain

• Instruct students to analyze a project with a mind map, preparing them for the

programming session.

20 minutes

Section 3 – Elaborate

• Give students the freedom to explore further so that they can enhance their

programming skills.

5~10 minutes

Section 4 – Evaluate

• Allow students time to try the game that they developed and have them think

about the applications of data in other games.

© education.makeblock.com 169

 Activities

Section 1 – Engage

[5~10 minutes]

Objective:

• Recap the previous lesson and clarify the objectives of this lesson.

Procedures:

• Show students the complete version of Dodge the Bird.

• Summarize: Last time we completed the following features:

 control of a player character's movement

 a penalty system: if a player character touches a hazard, it loses a life

 a decision structure: if a player character is out of lives, the game ends

We'll continue developing the game, adding a feature that allows players to choose a player character.

© education.makeblock.com 170

Section 2 – Explain

[10 minutes]

Objective:

• Instruct students to analyze a project with a mind map, preparing them for the programming session.

Procedures:

• Work with students to analyze the features of Dodge the Bird.

• Instruct students to draw a mind map.

© education.makeblock.com 171

Section 3 – Elaborate

[20 minutes]

Objective:

• Give students the freedom to explore further so that they can enhance their programming skills.

Procedures:

• Open the preset program that has the basic game features.

• Connect CyberPi to mBlock.

• Design a player character selection page:

o In the programs we wrote during the previous lesson, the game begins as soon as we press the start

button.

o Let's make a small change to the program. When we press the button, we enter a player character

selection page.

Example program (CyberPi) Old version (CyberPi)

o The player character selection page includes two parts: instructions and player characters.

 Instructions: Click the sprite "Title and instructions" and find the costume "selection

instructions".

© education.makeblock.com 172

 Character options: Display the player characters, Jinnee and Witch, on the stage.

 NOTE: To make sure every game has a fresh start, use the stop other scripts in this sprite

block.

• Select a player character:

o Joystick to the left: Jinnee

Joystick to the right: Witch.

o To make it easier to extend the character selection feature, create a variable "Mode" to record

players’ options. "1" is Jinnee is and "2" Witch.

© education.makeblock.com 173

o NOTE:

① To make sure every game has a fresh start, use the stop other scripts in this sprite block.

② To make sure a player can't select characters aMer the game begins, use broadcast () and wait.

• After the player confirms the player character, the game starts.

• The "Title and instructions" sprite disappears when the game starts:

• The character chosen by the player appears on the stage. That is, when selecting Jinnee, the player continues

the game as Jinnee. Build on the program that was created in the previous lesson.

o To make the program easier to understand, create a function "CharacterStatus" to record a

character's status after the game starts:

Function Definition

© education.makeblock.com 174

o Include the function "CharacterStatus" and the variable "Mode" in the script:

o NOTE:

© education.makeblock.com 175

① Based on the scripts for Jinnee, complete the ones for Witch, including an animated effect, player

character status, up/down movement, and a game-over effect.

② Func�ons can't be shared across sprites. So, duplicate the scripts into the sprite Witch and then

create and define the function in the scripts area of Witch.

• Result—Win: Last time, we completed the structure that decides whether a player loses the game. Now let's

add another decision structure to tell whether a player wins. Set the game length to 100 seconds. If the

character stays alive for 100 seconds, it means the character reaches the destination and the player wins.

o Make decisions based on time: Create a variable "time" to record the length of each game.

Example program (Sprite Sign) Example program (CyberPi)

 NOTE: You can add the script that records the game length to any sprite, but it's better to put

it in a sprite that has fewer scripts. In the example program, the length-recording script is

under the sprite "sign".

o Decide whether a player wins:

© education.makeblock.com 176

 NOTE:

① Join the blocks for deciding the result as shown:

② Animated timer: Displaying the game time on the stage helps players know the game progress in

real time. Do you still remember how we displayed scores in Fish Carnival Game? Use the same

method to display the game time.

© education.makeblock.com 177

For the sprite "Hundreds", divide the time by 100 and round the result down. For example,

 120/100=1.2, round 1.2 down to 1

 260/100=2.6, round 2.6 down to 2

Do the similar with the sprite "Tens", dividing the time by 10 and round down the result:

 NOTE:

① Take "130/10=13" as an example. The result is 13 but the sprite has only 10 looks. So, the

sprite turns to its third look, "3".

② As for the sprite "Ones", use () mod (). For example, 4/10=0.4, and take the remainder "4".

© education.makeblock.com 178

Based on the game effects, these digits (hundreds, tens, and ones) don't appear on the

startup, character selection, and victory interfaces, and they stop updating when the game

ends. To achieve these effects, write the following scripts:

• Now, add the victory effects:

o Destination appears:

© education.makeblock.com 179

o Character animation:

o NOTE: The example programs are for the Sprite Jinnee. Duplicate the scripts into Witch.

Section 4 – Evaluate

[5~10 minutes]

© education.makeblock.com 180

Objective:

• Allow students time to try the game that they developed and have them think about the applications of data

in other games.

Procedures:

• Invite two students to try the game and let them compete to see who can finish the game.

• Explain: Dodge the Bird needs data to complete its features. Whether CyberPi’s button is pressed and

whether CyberPi is tilted forward or backward are all reported to the program as data. We used variables, like

"Lives" and "Time" to keep a record of all the data we want. And the major feature, player character

selection, relies on the data stored in the variables to call upon the corresponding scripts.

• Ask: Think about the games you’ve played. Which features of them may involve data?

