

Page 1

Lesson 1~2 Python Quizzes

Category: Python Level: Introductory Time Frame: 90 minutes

Core Subject Area: Computing

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

This lesson will introduce the features of the CyberPi device. Students will explore some

commonly used input and output devices of CyberPi, including the buttons, the joystick, the

display screen, and the LED strip. Students will also investigate how to utilise these physical

components to create a simple keypad. Students will use the keypad to answer quizzes on

Python or other topics.

Key Focus

 Physical components of CyberPi

 The ‘cyberpi’ module and how to import it in the mBlock Python editor

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Identify some common physical components of CyberPi and their corresponding scripts,

including the display screen, the LED strip, the buttons, and the joystick

 Explain the use of the ‘cyberpi’ module in association with previous programming

experience, recognise and execute the functions from the ‘import’ module

Page 2

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Understand how instructions are stored and executed within a computer system;

understand how data of various types (including text, sounds and pictures) can be

represented and manipulated digitally, in the form of binary digits

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-02: Design projects that combine hardware and software components to collect

and exchange data.

 2-DA-07: Represent data using multiple encoding schemes.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

Page 3

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python editor installed

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python editor installed

 CyberPi devices

 Type-C cables

 Worksheets

Page 4

Features of CyberPi

Page 5

Example Program

1. import cyberpi

2. # Import the cyberpi module to call functions

3.

4. cyberpi.display.clear()

5. # Clear the screen

6. cyberpi.led.off()

7. # Light off

8.

9. cyberpi.console.println("A - True")

10. cyberpi.console.println("B - False")

11. # Print in a new line

12.

13. cyberpi.led.on(255, 255, 255)

14. # Produce white light

15. cyberpi.console.println("Python is a compiled language.")

16. cyberpi.console.println("Your Answer:")

17.

18. while True:

19. if cyberpi.controller.is_press("a"):

20. # If the Button A is pressed

21. cyberpi.led.on(255, 0, 0)

22. cyberpi.console.println("Incorrect.")

23. cyberpi.console.println("Correct Answer: False")

24. break

25. # Stop all the scripts

26.

27. if cyberpi.controller.is_press("b"):

28. # If the Button B is pressed

29. cyberpi.led.on(0, 255, 0)

30. cyberpi.console.println("Correct!")

31. break

Page 6

Pre-assessment

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 Import random

 Loops

 Conditionals

 The print() function

 Python data types

Page 7

Procedures

Section 1 Introduction: CyberPi and API (30 minutes)

Step 1.1 Display and introduce the CyberPi device.

 Ask students to observe their devices. Have them identify the physical

components of CyberPi and fill in the blank on the worksheet.

①

②

③

④

⑤

Page 8

Step 1.2 Instruct students to connect CyberPi to the laptop or desktop.

 Demonstrate how to use the USB Type-C cable to connect CyberPi to the

laptop or desktop.

Page 9

 Instruct students to open mLink2 and access the mBlock Python editor.

 Instruct students to click Connect and select the correct serial port.

Page 10

 Remind students that they should choose Live mode, which allows them to

code in real time.

 Summarise the connection method and other operation.

Step 1.3 Introduce the concept of API.

 Say: How can we program CyberPi in the mBlock Python editor? If we want to

display text on the screen, what functions do we need to use? Could we display

text on the screen just with ‘print()’ (e.g. print(“Hello, CyberPi!”))?

Page 11

 Explain: To program CyberPi in the Python editor, we need to know and use the

application programming interface of CyberPi. The application programming

interface (API) of CyberPi is a computing interface which defines interactions

between CyberPi and the Python editor. It allows us to write Python code in the

editor to program CyberPi. As this API is not built in Python, we need to write

the statement ‘import cyberpi’ in the first place:

import cyberpi

Page 12

Section 2 Predict and Run (15 minutes)

Step 2.1 Distribute the example program file to the class. Have students read the code

and discuss what the code can do before running it.

 Say: The example program is a simple quiz application. Use the button ‘A’ or ‘B’

to answer the true or false question displayed on the screen.

1. import cyberpi

2.

3. cyberpi.display.clear()

4. cyberpi.led.off()

5.

6. cyberpi.console.println("A - True")

7. cyberpi.console.println("B - False")

8.

9. cyberpi.led.on(255, 255, 255)

10. cyberpi.console.println("Python is a compiled language.")

11. cyberpi.console.println("Your Answer:")

12.

13. while True:

14.

15. if cyberpi.controller.is_press("a"):

16. cyberpi.led.on(255, 0, 0)

17. cyberpi.console.println("Incorrect.")

18. cyberpi.console.println("Correct Answer: False")

19. break

20.

21. if cyberpi.controller.is_press("b"):

22. cyberpi.led.on(0, 255, 0)

23. cyberpi.console.println("Correct!")

24. break

 Instruct students to write down their predictions and annotate the code.

 Also, provide some hints to point out the physical components CyberPi has and

how these physical components are programmed.

Page 13

① Screen – cyberpi.display, cyberpi.console

② LED Strip – cyberpi.led

③ Buttons A and B – cyberpi.controllor.is_press()

 Ask students to think about the questions below:

 Which module is imported in this program? Explain why we should import

this module.

 How to print text on the screen?

 How to light up/off the LED strip?

 How to set the light colour? How to represent light colours in Python?

 How to enter the answer?

 How to evaluate the answer?

①

②

③

Page 14

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program. Students could write down some main points in

the third column if they get some ideas about what they will learn in this

lesson.

What I Know What I Wonder What I Learnt

 Import modules

 Loops

 Conditionals

 The print() function

 Python data types

 How does CyberPi work?

 How to program CyberPi

by using Python?

Page 15

Section 3 Investigate (20 minutes)

Step 3.1 Explain the use of the ‘cyberpi’ module as the prerequisite for programming

CyberPi in Python.

 Have students recall when they need to use the ‘import’. Ask them to explain

why they need to use this syntax.

(Tip: import random)

 Give an example: When we want to model a probability problem in Python, we

need to import the ‘random’ module to generate a set of numbers. When the

‘random’ module is added, we can then use functions and expressions such as

‘random.randint()’ to create the sequence of integers.

 Explain: We need to import the cyberpi module; otherwise, we cannot program

CyberPi in Python.

Step 3.2 Explain how to display text on CyberPi’s screen.

 Say: We cannot write the code – for example, ‘print(“Hello, CyberPi!”)’ in the

Python editor – to display the text on CyberPi’s screen. We need to call a

function that allows us to program the display screen of CyberPi.

 Emphasise the use of API: To program the screen or other physical

components, we need to know the Application Programming Interface (API) of

these components. An API enables data transmission between the Python

editor and CyberPi. The API of a physical component specifies executable code

on request. If we want to display ‘Hello, CyberPi!’ on CyberPi’s screen, for

instance, we need to know the API of the screen.

 Point out the API code samples of CyberPi’s screen:

cyberpi.console.print()

cyberpi.console.println()

 Demonstrate how to display the text ‘Hello, CyberPi!’ on the screen.

Page 16

Instruct students to run the code shown below:

import cyberpi

cyberpi.console.print(“Hello, CyberPi!”)

 Explain the difference between the ‘cyberpi.console.print()’ and

‘cyberpi.console.println()’. Explain that the latter makes the text go to the

next line automatically while printing out the new content.

 Instruct students to run and compare the two examples as follows:

Example 1-1 (a)

import cyberpi

cyberpi.console.print(“Hello, CyberPi!”)

cyberpi.console.print(“I can program you in Python.”)

Example 1-1 (b)

import cyberpi

cyberpi.console.println(“Hello, CyberPi!”)

cyberpi.console.println(“I can program you in Python.”)

 Explain how to create a new line of output with this function:

cyberpi.console.println(“”)

 Remind students that if they want to clear the screen, they can use:

cyberpi.display.clear()

 Remind students that they should pay attention to the letter case while

reading and writing code.

 Instruct students to annotate the learnt API code samples in the example

program.

Page 17

Example 1-2

1. import cyberpi

2. # Import the 'cyberpi' module before programming

3.

4. cyberpi.console.println("A - True")

5. # Print 'A - True' and then move to the next line

6.

7. cyberpi.console.println("B - False")

8. # Print 'B - False' and then move to the next line

9.

10. cyberpi.console.println("")

11. # Enter a line break

Step 3.3 Explain how to program the LED strip.

 Introduce the API code samples of the LED strip used in the example program:

cyberpi.led.on()

cyberpi.led.off()

 Introduce other API code samples of the LED strip for reference.

cyberpi.led.on(“green”, id=“all”)

cyberpi.led.on(“red”, id=3)

cyberpi.led.show(“orange yellow cyan blue purple”)

cyberpi.led.play(name=“firefly”)

cyberpi.led.off(id=“3”)

 Instruct students to annotate the learnt API code samples in the example

program.

Step 3.4 Explain how to program the two buttons.

 Say: By pressing the Button A or Button B, we make the true or false choice.

 Introduce the API code samples of the button used in the example program:

cyberpi.controller.is_press(“a”)

cyberpi.controller.is_press(“b”)

Page 18

 Introduce API code samples that relate to the joystick input:

cyberpi.controller.is_press(“up”)

cyberpi.controller.is_press(“down”)

cyberpi.controller.is_press(“right”)

cyberpi.controller.is_press(“left”)

cyberpi.controller.is_press(“middle”)

Step 3.5 Have students discuss the use of control flow structures used in the example

program.

Page 19

Section 4 Modify and Make (20 minutes)

Step 4.1 Summarise the API code samples of the screen, the LED strip, the buttons, and

the joystick.

Step 4.2 Have students work individually to complete the tasks as follows:

 Task 1: Modify the quiz and the answer in the example program.

 Suggest some true-or-false questions for consideration:

In Python, 200.0 is an integer. (False)

‘True’ and ‘true’ are same in Python. (False)

The word ‘break’ can be used to name a variable. (False)

To program CyberPi, you should import ‘cyberpi’. (True)

The ‘input()’ returns a string. (True)

…

 However, students can also design quizzes on other topics, for example:

Glasgow is the capital city of Scotland. (False)

Aberdeen is called the ‘Oil Capital of Europe’. (True)

The European Central Bank is headquartered in Amsterdam. (False)

Belarus is a member country of the EU. (False)

Jane Austin wrote the fiction Emma. (True)

H.C. Andersen was a Swedish author. (False)

Official languages of the UN include Arabic. (True)

The Mona Lisa by Raphael is on display in Louvre. (False)

Auguste Rodin created the sculpture The Thinker. (True)

…

Page 20

 Task 2: Modify the lighting effects.

 Remind students that they can design the lighting effects or use the

default sources.

 The default lighting sources include:

Firefly: cyberpi.led.play(name=“firefly”)

Rainbow: cyberpi.led.play(name=“rainbow”)

Spoondrift: cyberpi.led.play(name=“spoondrift”)

Meteor Shower: cyberpi.led.play(name=“meteor_blue”);

cyberpi.led.play(name=“meteor_green”)

Flash: cyberpi.led.play(name=“flash_orange”); cyberpi.led.play(name=“flash_red”)

Page 21

 Task 3: Use the joystick instead to enter the answer.

 Instruct students to use the joystick’s ‘up’ and ‘down’ input to decide the

‘True’ and ‘False’ options.

Example – Task 3

1. import cyberpi

2.

3. cyberpi.display.clear()

4. cyberpi.led.off()

5.

6. cyberpi.led.play(name="rainbow")

7.

8. cyberpi.console.println("Python is a compiled language.")

9. cyberpi.console.println("")

10. cyberpi.console.println("Your Answer:")

11.

12. while True:

13. if cyberpi.controller.is_press("up"):

14. # If the Button A is pressed

15. cyberpi.led.on("red", id="all")

16. cyberpi.console.println("Incorrect.")

17. cyberpi.console.println("Correct Answer: False")

18. break

19. if cyberpi.controller.is_press("down"):

20. cyberpi.led.on("green", id="all")

21. cyberpi.console.println("Correct!")

22. break

 Differentiation: For advanced learners, encourage them to consider what if

it is a multiple-choice question that provides five options. Use the joystick

as an input device to enter the possible input responses, including ‘Choose

A’, ‘Choose B’, ‘Choose C’, “Choose D”, and “None”.

Example – Task 3 (Advanced)

Page 22

1. import cyberpi

2.

3. x = 0

4. # Initialise the counter

5. cyberpi.led.off()

6. cyberpi.display.clear()

7. cyberpi.led.on(255, 255, 255)

8. # Initialise the device

9.

10. while x < 14:

11. # Terminate the while loop after completing 14 quizzes

12. if cyberpi.controller.is_press("up"):

13. # Choose Option A

14. cyberpi.console.print("A ")

15. cyberpi.led.on("cyan", id="all")

16. x += 1

17. # Update counter

18. if cyberpi.controller.is_press("left"):

19. # Choose Option B

20. cyberpi.console.print("B ")

21. cyberpi.led.on("yellow", id="all")

22. x += 1

23. # Update counter

24. if cyberpi.controller.is_press("down"):

25. # Choose Option C

26. cyberpi.console.print("C ")

27. cyberpi.led.on("purple", id="all")

28. x += 1

29. # Update counter

30. if cyberpi.controller.is_press("right"):

31. # Choose Option D

32. cyberpi.console.print("D ")

33. cyberpi.led.on("orange", id="all")

34. x += 1

35. # Update counter

36. if cyberpi.controller.is_press("middle"):

37. # None

38. cyberpi.console.print(" ")

39. # Leave it empty

40. cyberpi.led.on("black", id="all")

41. x += 1

42. # Update counter

Page 23

Section 5 Recap (5 minutes)

Step 5.1 Summarise the key points learnt in this lesson.

 The prerequisite for programming CyberPi in the Python editor.

 CyberPi’s physical components learnt in this lesson.

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 Import modules

 Loops

 Conditionals

 The print() function

 Python data types

 How does CyberPi work?

 How to program CyberPi

by using Python?

 Concept of API

 Import cyberpi

 Display screen of CyberPi

 LED strip of CyberPi

 Buttons of CyberPi

 Joystick of CyberPi

Page 1

Lesson 3 Data Protection and Passwords

Category: Python Level: Introductory Time Frame: 45 minutes

Core Subject Area: Computing

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

In this lesson, students will explore the data security issue and create a digital artefact to

demonstrate how a password-protected security device can protect personal data.

Students need to describe the commonly used data security measures and when to use

them. Based on real-life scenarios, students should explain the importance of data security

measures. Students will also explore how to use physical security devices to verify and

confirm information.

Key Focus

 How to display text on the display screen of CyberPi

 How to nest conditionals and loops

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Explain the common security measures to protect personal data and information with

real-life examples

 Explain how to create a password and verify the password through a password-

protected security device

 Write and execute algorithms to simulate how a password-protected security device

protects personal data

Page 2

Page 3

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Understand several key algorithms that reflect computational thinking; use logical

reasoning to compare the utility of alternative algorithms for the same problem

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Understand how instructions are stored and executed within a computer system;

understand how data of various types (including text, sounds and pictures) can be

represented and manipulated digitally, in the form of binary digits

 Understand a range of ways to use technology safely, respectfully, responsibly and

securely, including protecting their online identity and privacy

Page 4

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-02: Design projects that combine hardware and software components to collect

and exchange data.

 2-NI-05: Explain how physical and digital security measures protect electronic

information.

 2-DA-07: Represent data using multiple encoding schemes.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

 2-IC-20: Compare tradeoffs associated with computing technologies that affect

people's everyday activities and career options.

Page 5

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python code editor installed

(Available from https://python.mblock.cc/)

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python code editor installed

(Available from https://python.mblock.cc/)

 CyberPi devices

 Type-C cables

 Worksheets

Page 6

Features of CyberPi

Page 7

Example Program

1. import cyberpi

2.

3. cyberpi.display.clear()

4. t = 0

5. while True:

6. print("Create a password")

7. pin_1 = input("Type password: ")

8. pin_2 = input("Type password again: ")

9. if pin_2 == pin_1:

10. print("Success!")

11. break

12. else:

13. print("Passwords don't match. Try again.")

14.

15. print("Sign in your account")

16. cyberpi.console.println("Sign in")

17. while t < 3:

18. # Have 3 attempts

19. # If t < 3 is true, iterate the loop body

20. pin = input("Password: ")

21. cyberpi.console.print("Password: ")

22. cyberpi.console.println(pin)

23.

24. # Verify the input password:

25. if pin == pin_1:

26. # Passwords match

27. cyberpi.console.println("Success!")

28. break

29. else:

30. # Passwords don't match

31. cyberpi.console.println("Incorrect. Try again.")

32. t += 1

33. # Reduce the number of attempts

34. if t == 3:

35. cyberpi.console.println("Too many failed attempts.")

Page 8

Pre-assessment

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 Concept of the API

 Import cyberpi

 Display screen of CyberPi

 LED strip of CyberPi

 Buttons of CyberPi

 Joystick of CyberPi

Page 9

Procedures

Section 1 Introduction: Importance of Password Security (6 minutes)

Step 1.1 Discuss the essence of password-protected security measures.

 Ask: When do you use passwords (or passcode numbers)?

 Have students share their or their family members' experience of using

passwords and explain why they use passwords.

 Summarise students' discussion and list some of the common situations that

people use passwords to protect their data and privacy (for example, sign in to

Google account, unlock the mobile phone, withdraw money, make a payment,

etc.).

 Ask: What if we do not have passwords (or passcode numbers) in these

situations, what may happen? What kinds of problems would you have?

 Have students discuss the security of passwords (or passcode numbers)

through real life examples.

Page 10

Section 2 Predict (6 minutes)

Step 2.1 Distribute the example program file to the class. Have students read the code

and discuss what the code can do before running it.

 Say: The example program is to demonstrate how to create and verify a

password through a physical password-protected security device.

1. import cyberpi

2.

3. cyberpi.display.clear()

4. t = 0

5.

6. while True:

7. print("Create a password")

8. pin_1 = input("Type password: ")

9. pin_2 = input("Type password again: ")

10. if pin_2 == pin_1:

11. print("Success!")

12. break

13. else:

14. print("Passwords don't match. Try again.")

15.

16.

17. print("Sign in your account")

18. cyberpi.console.println("Sign in")

19.

20. while t < 3:

21. pin = input("Password: ")

22. cyberpi.console.print("Password: ")

23. cyberpi.console.println(pin)

24. if pin == pin_1:

25. cyberpi.console.println("Success!")

26. break

27. else:

28. cyberpi.console.println("Incorrect. Try again.")

29. t += 1

30. if t == 3:

31. cyberpi.console.println("Too many failed attempts.")

Page 11

 Ask students to think about the questions below:

 How to create a password for a new account?

 How to verify the password entered by a user?

 Compare the two while loops used in the example program. What is the

difference between them?

 Identify the syntax that enables this function: A user is given 3 attempts to

enter the account password. If the user fails 3 times, the user cannot enter

the password any more.

Page 12

Section 3 Run (3 minutes)

Step 3.1 Ask students to run the example program and check against their predictions.

 Ask students to think about the above questions while running the program.

 Instruct students to annotate the code on the worksheet based on their

observation.

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program.

What I Know What I Wonder What I Learnt

 Import cyberpi

 Display screen of CyberPi

 LED strip of CyberPi

 Buttons of CyberPi

 Joystick of CyberPi

 How does CyberPi interact

with the computer (e.g.

send and receive data)?

 How to display text

CyberPi’s screen?

Page 13

Section 3 Investigate (10 minutes)

Step 3.1 Have students discuss the above questions and Invite volunteers to share their

findings.

Step 3.2 Explain how the example program works.

 Explain: The user needs to type the password twice and the variables 'pin_1'

and 'pin_2' store the password input. The expression ‘if pin_1 == pin_2 (is True)’

is to confirm whether the two passwords match each other.

 Have students think about why the user should type the password two

times.

 Remind students of the use of the ‘break’ function in the while loop.

1. while True:

2. print("Create a password")

3. pin_1 = input("Type password: ")

4. pin_2 = input("Type password again: ")

5. if pin_2 == pin_1:

6. print("Success!")

7. break

8. else:

9. print("Passwords don't match. Try again.")

 Students should identify the part of code as follows to answer how the

account password is verified. Have students explain the functions and logic in

their own words.

 Have students think about the similarity between the function of creating

a password and the function of verifying the password.

 Have students compare the two while loops and figure out the difference.

Possible Answer: The ‘while True’ is to create an indefinite iteration, which

means specified times the loop is executed isn’t specified on request. In

short, the ‘while True’ means loop forever.

Page 14

In the ‘while <controlling expression> (is True)’ (e.g. ‘while t < 3:’), however,

as it has a controlling expression as the specified condition for iteration,

the loop is executed if the controlling expression is verified as ‘True’. In the

example program, the user has three attempts to type the password to

sign in to the account, and therefore, the controlling expression is ‘t < 3’.

1. while t < 3:

2. # Have 3 attempts

3. pin = input("Password: ")

4. # Type the password

5. cyberpi.console.print("Password: ")

6. cyberpi.console.println(pin)

7. # Display the password on the screen

8. # Verify the input password:

9. if pin == pin_1:

10. # Passwords match

11. cyberpi.console.println("Success!")

12. break

13. else:

14. # Passwords don't match

15. cyberpi.console.println("Incorrect. Try again.")

16. t += 1

17. # Reduce the number of attempts

 Students should identify and explain how to lock the account after 3

unsuccessful sign-in attempts.

if t == 3:

cyberpi.console.println(“Too many failed attempts.”)

Step 3.2 Summarise the key points of the example program.

Page 15

Section 4 Modify (10 minutes)

Step 4.1 Have students work in pairs or individually to complete the tasks as follow:

 Task 1: Add the function that allows the user to create a username when the

user signs in.

Page 16

Example – Task 1

1. import cyberpi

2.

3. cyberpi.display.clear()

4. t = 0

5. while True:

6. user_id = input("Create a username: ")

7. # Create a username

8. print("Create a password")

9. pin_1 = input("Type password: ")

10. pin_2 = input("Type password again: ")

11. if pin_2 == pin_1:

12. print("Success!")

13. break

14. else:

15. print("Passwords don't match. Try again.")

16.

17. print("Sign in your account")

18. cyberpi.console.println("Sign in")

19. while t < 3:

20. user = input("Username: ")

21. # Type the username

22. cyberpi.console.print("Username: ")

23. cyberpi.console.println(user)

24. pin = input("Password: ")

25. cyberpi.console.print("Password: ")

26. cyberpi.console.println(pin)

27. if user == user_id and pin == pin_1:

28. # Verify the username

29. cyberpi.console.println("Success!")

30. break

31. else:

32. cyberpi.console.println("Incorrect. Try again.")

33. t += 1

34. if t == 3:

35. cyberpi.console.println("Too many failed attempts.")

Page 17

 Task 2: Add some lighting effects as the indicator. Use what you have learnt to

program CyberPi.

API code samples of the LED strip:

cyberpi.led.on(255, 255, 255)

cyberpi.led.on(“green”, id = “all”)

cyberpi.led.on(“red”, id = 3)

cyberpi.led.show(“orange yellow cyan blue purple”)

cyberpi.led.play(name = “firefly”)

cyberpi.led.off(id = “3”)

 Task 3: Modify the second ‘while’ loop. Use the LED strip as an indicator to

remind the number of attempts.

(Note: Accordingly, the user has 5 login attempts.)

Page 18

Example – Task 3

1. import cyberpi

2.

3. cyberpi.display.clear()

4. cyberpi.led.off()

5. t = 0

6.

7. while True:

8. user_id = input("Create a username: ")

9. print("Create a password")

10. pin_1 = input("Type password: ")

11. pin_2 = input("Type password again: ")

12. if pin_2 == pin_1:

13. print("Success!")

14. break

15. else:

16. print("Passwords don't match. Try again.")

17.

18.

19. print("Sign in your account")

20. cyberpi.console.println("Sign in")

21. cyberpi.led.on("white", id="all")

22. while t < 5:

23. user = input("Username: ")

24. cyberpi.console.print("Username: ")

25. cyberpi.console.println(user)

26. pin = input("Password: ")

27. cyberpi.console.print("Password: ")

28. cyberpi.console.println(pin)

29. if user == user_id and pin == pin_1:

30. cyberpi.console.println("Success!")

31. cyberpi.led.play(name="rainbow")

32. break

33. else:

34. cyberpi.console.println("Incorrect. Try again.")

35. t += 1

36. cyberpi.led.off(id=t)

37. if t == 5:

38. cyberpi.console.println("Too many failed attempts. Locked.")

Page 19

 Task 4: Modify the conditional expressions. Verify three conditions as follows:

The input username is incorrect;

The input password is incorrect;

Both the username and password are incorrect.

Example – Task 4

Page 20

1. import cyberpi

2.

3. cyberpi.display.clear()

4. cyberpi.led.off()

5. t = 0

6. while True:

7. user_id = input("Create a username: ")

8. print("Create a password")

9. pin_1 = input("Type password: ")

10. pin_2 = input("Type password again: ")

11. if pin_2 == pin_1:

12. print("Success!")

13. break

14. else:

15. print("Passwords don't match. Try again.")

16. print("Sign in your account")

17. cyberpi.console.println("Sign in")

18. cyberpi.led.on("white", id="all")

19.

20. while t < 5:

21. user = input("Username: ")

22. cyberpi.console.print("Username: ")

23. cyberpi.console.println(user)

24. pin = input("Password: ")

25. cyberpi.console.print("Password: ")

26. cyberpi.console.println(pin)

27. if user == user_id and pin == pin_1:

28. cyberpi.console.println("Success!")

29. cyberpi.led.play(name="rainbow")

30. break

31. elif user != user_id and pin == pin_1:

32. cyberpi.console.println("Incorrect username. Try again.")

33. t += 1

34. cyberpi.led.off(id=t)

35. elif user == user_id and pin != pin_1:

36. cyberpi.console.println("Incorrect password. Try again.")

37. t += 1

38. cyberpi.led.off(id=t)

39. elif user != user_id and pin != pin_1:

40. cyberpi.console.println("Both incorrect. Try again.")

41. t += 1

42. cyberpi.led.off(id=t)

43. if t == 5:

44. cyberpi.console.println("Too many failed attempts. Locked.")

Page 21

Section 5 Make (8 minutes)

Step 5.1 Ask students to develop a bank card reader based on the structure and logic of

the example program.

 Explain what a card reader is: A card reader is a security device. When your

parents want to make a payment through bank accounts, they will be asked to

use the card reader as the security measure. For example, they need to enter

the PIN with the keypad on the card reader and receive a random verification

code or passcode number to confirm the transaction operation.

 Explain how the card reader project works as well as the requirement of the

project:

 Like the example program, first, create a PIN for the bank account and

store it on the computer.

 When a sender starts a transaction, ask the sender to type the name (or

other identification code) of the receiver and the amount of the transit

money.

 Then ask the sender to type the PIN.

 Generate a random 4-digit verification code and display it on CyberPi’s

screen. Ask the sender to enter the verification code.

 Check the PIN and verification code. If both are correct, display the

transaction information (including the receiver’s name or ID and the

transaction amount) on the screen.

However, if either the PIN or the verification code is incorrect, ask the

sender to type them again. The sender has limited attempts (for example,

3 attempts).

 Ask the sender to check the transaction information and confirm the

transaction by pressing Button B of CyberPi.

Page 22

 Demonstrate the program below to show how to create a 4-digit verification

code and display it on CyberPi’s screen.

Example 3-1

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4.

5. while True:

6. if cyberpi.controller.is_press("a"):

7. code = random.randint(1000, 9999)

8. cyberpi.console.print("Verification code: ")

9. cyberpi.console.println(code)

 Provide the part of code below for reference. Students should consider where

to insert the lines of code in the card reader program.

1. cyberpi.console.println("Confirm - Press B")

2. while not cyberpi.controller.is_press("b"):

3. pass

4. print("Success!")

5. cyberpi.display.clear()

6. break

 The above script is to confirm the transaction information displayed on the

screen. The sender should check the receiver and transit money and then

confirm the transaction operation if everything is correct.

 Have student annotate this part of code either in the Python editor or on

the worksheet.

Step 5.2 Instruct students to modify the example program and create the card reader

project.

Page 23

Section 6 Recap (2 minutes)

Step 6.1 Summarise the key points learnt in this lesson.

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 Import cyberpi

 Display screen of CyberPi

 LED strip of CyberPi

 Buttons of CyberPi

 Joystick of CyberPi

 How does CyberPi interact

with the computer (e.g.

send and receive data)?

 How to display text

CyberPi’s screen?

 How to use variables to

transmit data between the

computer and CyberPi

 How to display text on the

screen

 Importance of password

security

Page 1

Lesson 4 Normal Distribution

Category: Python Level: Introductory Time Frame: 45 minutes

Core Subject Area: Computing Supplementary Subject Area: Mathematics

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

Data can be spread out in various ways due to the variation in the data. The normal

distribution is the most important data distribution because it fits many natural

phenomena. In this lesson, students will explore the concept and features of the normal

distribution through Python. Take the dice roll probabilities as an example, students will

create data charts to represent all the possible outcomes and visualise the distribution of

all the results of the sum of the two dice. Students will measure and investigate the spread

of the data to gain an understanding of the normal distribution.

Key Focus

 How to display charts on the CyberPi’s screen

 Use of more than one module in Python and how to call relevant functions

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Identify the features of normal distribution model and explain why the kind of data

distribution is a normal distribution

 Write and execute repetitive algorithms to simulate probability experiments and create

computational models that can demonstrate the normal distribution phenomena

Page 2

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Understand several key algorithms that reflect computational thinking; use logical

reasoning to compare the utility of alternative algorithms for the same problem

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Make appropriate use of data structures; design and develop modular programs that

use procedures or functions

Page 3

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-02: Design projects that combine hardware and software components to collect

and exchange data.

 2-DA-07: Represent data using multiple encoding schemes.

 2-DA-08: Collect data using computational tools and transform the data to make it

more useful and reliable.

 2-DA-09: Refine computational models based on the data they have generated.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

Page 4

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python editor installed

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python editor installed

 CyberPi devices

 Type-C cables

 Worksheets

Page 5

Features of CyberPi

Page 6

Example Program

Page 7

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4. n = int(input("The number of times to roll 2 dice: "))

5. t = 0

6. sum_list = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

7. # Outcomes of the sum of two dice numbers

8. count_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

9. # Count the frequency of the sum in the sample space

10. while t < n:

11. dice_x = random.randint(1, 6)

12. dice_y = random.randint(1, 6)

13. print("(", dice_x, ",", dice_y, ")")

14. result = dice_x + dice_y

15. t += 1

16. sum_index = sum_list.index(result)

17. # Identify the index of the sum in the list 'sum_list'

18. count_list[sum_index] += 1

19. # Add '1' to the value of the corresponding item

20.

21. cyberpi.display.set_brush(128, 0, 0)

22. # Define the colour based on RGB colour model

23. cyberpi.barchart.add(round(count_list[0]/n * 200, 2))

24. # Create a bar

25. cyberpi.display.set_brush(220, 20, 60)

26. cyberpi.barchart.add(round(count_list[1]/n * 200, 2))

27. cyberpi.display.set_brush(255, 0, 0)

28. cyberpi.barchart.add(round(count_list[2]/n * 200, 2))

29. cyberpi.display.set_brush(205, 92, 92)

30. cyberpi.barchart.add(round(count_list[3]/n * 200, 2))

31. cyberpi.display.set_brush(233, 150, 122)

32. cyberpi.barchart.add(round(count_list[4]/n * 200, 2))

33. cyberpi.display.set_brush(255, 69, 0)

34. cyberpi.barchart.add(round(count_list[5]/n * 200, 2))

35. cyberpi.display.set_brush(255, 165, 0)

36. cyberpi.barchart.add(round(count_list[6]/n * 200, 2))

37. cyberpi.display.set_brush(255, 215, 0)

38. cyberpi.barchart.add(round(count_list[7]/n * 200, 2))

39. cyberpi.display.set_brush(240, 230, 140)

40. cyberpi.barchart.add(round(count_list[8]/n * 200, 2))

41. cyberpi.display.set_brush(255, 255, 0)

42. cyberpi.barchart.add(round(count_list[9]/n * 200, 2))

43. cyberpi.display.set_brush(154, 205, 50)

44. cyberpi.barchart.add(round(count_list[10]/n * 200, 2))

Page 8

Pre-assessment

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 Import random

 Import cyberpi

 Display screen of CyberPi

 ‘cyberpi.console’

 ‘cyberpi.display’

Page 9

Procedures

Section 1 Introduction: Normal Distributions (8 minutes)

Step 1.1 Explain the concept of normal distribution.

 Explain: The graph of a standard normal distribution has a symmetrical bell-

shaped curve. The mean and median are equal in the normal distribution. Its

standard deviation is 1.

(Source: M. W. Toews © Wikimedia Commons)

 Describe the graph of the normal distribution: In a normal distribution, most of

the continuous data values tend to cluster around the mean, and the further a

value is from the mean. Normal distributions are important in statistics

because many continuous data in nature displays this bell-shaped curve when

compiled and graphed.

Step 1.2 Use the two dice rolling probability experiment to further explain the normal

distribution and its application.

 Ask: Suppose if you roll two dice and calculate the sum of the two dice, how

many results do you get?

 Ask students to write down and summarise all the possible results of the sum

of two dice as well as the frequency of occurrence:

Page 10

Dice A

Dice B
1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Result of Sum 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

 Say: It seems that this is not enough efficient to demonstrate the spread of

the results of the sum. Let’s use Python to create a computational model for

this probability experiment and graph a chart on CyberPi’s screen.

Page 11

Section 2 Predict (4 minutes)

Step 2.1 Distribute the example program file to the class. Have students read the code

and discuss what the code can do before running it.

 Instruct students to write down their predictions and annotate the code.

 Ask students to figure out the points below:

 The modules imported in this program;

 The variables displayed in the bar chart;

 Are ‘sum_list’ and ‘count_list’ variables? What are the values of them?

 The function that sets the colour of the bar chart;

 The function that creates the bars.

Page 12

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4.

5. n = int(input("The number of times to roll 2 dice: "))

6. t = 0

7. sum_list = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

8. count_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

9.

10. while t < n:

11. dice_x = random.randint(1, 6)

12. dice_y = random.randint(1, 6)

13. print("(", dice_x, ",", dice_y, ")")

14. result = dice_x + dice_y

15. t += 1

16. sum_index = sum_list.index(result)

17. count_list[sum_index] += 1

18.

19. cyberpi.display.set_brush(128, 0, 0)

20. cyberpi.barchart.add(round(count_list[0]/n * 200, 2))

21. cyberpi.display.set_brush(220, 20, 60)

22. cyberpi.barchart.add(round(count_list[1]/n * 200, 2))

23. cyberpi.display.set_brush(255, 0, 0)

24. cyberpi.barchart.add(round(count_list[2]/n * 200, 2))

25. cyberpi.display.set_brush(205, 92, 92)

26. cyberpi.barchart.add(round(count_list[3]/n * 200, 2))

27. cyberpi.display.set_brush(233, 150, 122)

28. cyberpi.barchart.add(round(count_list[4]/n * 200, 2))

29. cyberpi.display.set_brush(255, 69, 0)

30. cyberpi.barchart.add(round(count_list[5]/n * 200, 2))

31. cyberpi.display.set_brush(255, 165, 0)

32. cyberpi.barchart.add(round(count_list[6]/n * 200, 2))

33. cyberpi.display.set_brush(255, 215, 0)

34. cyberpi.barchart.add(round(count_list[7]/n * 200, 2))

35. cyberpi.display.set_brush(240, 230, 140)

36. cyberpi.barchart.add(round(count_list[8]/n * 200, 2))

37. cyberpi.display.set_brush(255, 255, 0)

38. cyberpi.barchart.add(round(count_list[9]/n * 200, 2))

39. cyberpi.display.set_brush(154, 205, 50)

40. cyberpi.barchart.add(round(count_list[10]/n * 200, 2))

Page 13

Section 3 Run (3 minutes)

Step 3.1 Ask students to run the example program and check against their predictions.

 Instruct students to annotate the code on the worksheet based on their

observation.

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program.

What I Know What I Wonder What I Learnt

 Import random

 Import cyberpi

 Display screen of CyberPi

 ‘cyberpi.console’

 ‘cyberpi.display’

 What if I need to use more

than one module, what

should I do in Python?

 How to create data charts

on CyberPi’s screen?

Page 14

Section 4 Investigate (15 minutes)

Step 4.1 Explain the use of lists.

 Say: ‘sum_list’ and ‘count_list’ are lists in Python. A list is an ordered collection

of data. For example, the ‘sum_list’ contains all the possible results of the sum

of the two dice, which you can see inside the square brackets.

 Explain the list index: We use the ‘index()’ method to check the position of the

sum of the two dice. The ‘index()’ method returns the position of the given

number in a list.

 Remind students that the index of a list starts from ‘0’. For example, in the

‘sum_list’, the index of the item ‘2’ is ‘0’ and the index of the item ‘3’ is ‘1’.

Step 4.2 Explain how to read and rewrite the value of an element on the list.

 Explain: The ‘list.index[]’ expression can not only return the value of an item on

the list according to the given index in the square brackets but also modify the

value. In the example program, the ‘count_list[sum_index] += 1’ expression is to

modify the value of the corresponding element by adding ‘1’.

 Explain the relation between the ‘sum_list’ and ‘count_list’: The example

program creates two lists: ‘sum_list’ represents all the possible results of the

sum of the two dice, and ‘count_list’ records the frequency of the

corresponding sum. The ‘count_list[sum_index] += 1’ expression counts the

frequency of the sum and modify the value in the corresponding position.

Step 4.3 Explain how to graph a bar chart on the screen.

 Ask students to identify the modules imported in Python which then allow

them to program CyberPi’s screen and call the ‘random’ functions.

import cyberpi, random

Page 15

 Point out the relevant functions for graphing the bar chart:

cyberpi.display.clear()

cyberpi.display.set_brush()

cyberpi.barchart.add()

 Explain the syntax cyberpi.display.clear(): It is used to clear the content

displayed on the screen. When we start a new program or project, we can

use this syntax to clear the previous content shown on the screen and

initialise the screen.

 Explain the syntax cyberpi.display.set_brush(): To graph the bar chart, first,

we can decide which colour the bars are. The parameter inside the round

brackets can be made up of numbers or a string.

If the parameters are integers – e.g. ‘(255, 255, 255)’, these digits or values

represent a specified colour in the RGB colour model. The ‘RGB’ represents

the three kinds of additive primary colours: red, green, and blue. The

parameter in the round bracket is the RGB colour code – e.g. ‘(red, green,

blue)’.

However, the parameter of this syntax can be a string. Use these keywords

to define the colour of the bar:

‘red’, ‘orange’, ‘yellow’, ‘green’, ‘cyan’, ‘blue’, ‘purple’, ‘white’, ‘black’

 Remind students that the colour keywords must be all in lower case.

 Explain the syntax cyberpi.barchart.add(): Use this syntax to import the

data we have to the bar chart.

 Explain the values represented by the bars. The values come from the

‘count_list’ that records the frequency of each sum.

Page 16

Section 5 Modify and Make (10 minutes)

Step 5.1 Have students work individually to create another computational model for the

coin toss probabilities.

 Ask students to simulate the experiment of tossing two coins together.

Calculate all the possible outcomes in this experiment and visualise the

distribution with a bar chart.

Example 4-1 (a)

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4. n = int(input("The number of times to throw up 2 coins: "))

5. event_list = [0, 0, 0]

6.

7. for i in range(0, n):

8. coin_x = random.randint(0, 1)

9. coin_y = random.randint(0, 1)

10. # '0' represents 'head', '1' represents 'tail'

11. print("(", coin_x, ",", coin_y, ")")

12. if coin_x == 0 and coin_y == 0:

13. # 2 heads

14. event_list[0] += 1

15. elif coin_x == 1 and coin_y == 1:

16. # 2 tails

17. event_list[2] += 1

18. else:

19. # 1 head, 1 tail

20. event_list[1] += 1

21.

22. cyberpi.display.set_brush(255, 0, 0)

23. cyberpi.barchart.add(round(event_list[0]/n * 200, 2))

24. cyberpi.display.set_brush(0, 255, 0)

25. cyberpi.barchart.add(round(event_list[1]/n * 200, 2))

26. cyberpi.display.set_brush(0, 0, 255)

27. cyberpi.barchart.add(round(event_list[2]/n * 200, 2))

Page 17

Example 4-1 (b)

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4. n = int(input("The number of times to throw up 2 coins: "))

5. coin_list = ["head", "tail"]

6. event_list = [0, 0, 0]

7.

8. for i in range(0, n):

9. coin_x = random.choice(coin_list)

10. coin_y = random.choice(coin_list)

11. print("(", coin_x, ",", coin_y, ")")

12. if coin_x == "head" and coin_y == "head":

13. # 2 heads

14. event_list[0] += 1

15. elif coin_x == "tail" and coin_y == "tail":

16. # 2 tails

17. event_list[2] += 1

18. else:

19. # 1 head, 1 tail

20. event_list[1] += 1

21.

22. cyberpi.display.set_brush(255, 0, 0)

23. cyberpi.barchart.add(round(event_list[0]/n * 200, 2))

24. cyberpi.display.set_brush(0, 255, 0)

25. cyberpi.barchart.add(round(event_list[1]/n * 200, 2))

26. cyberpi.display.set_brush(0, 0, 255)

27. cyberpi.barchart.add(round(event_list[2]/n * 200, 2))

Note: Create a list to store the ‘head’ and ‘’ and use the ‘random.choice’

function to randomly select one of the outcomes.

 Ask students to think about this question: Toss a coin 3 times and what is the

probability of getting three heads, two heads, one head, and no head?

Have students plot a graph on CyberPi’s screen to demonstrate all the possible

outcomes.

Page 18

 Have students list all the possible outcomes.

Head, Head, Head

Head, Head, Tail

Head, Tail, Head

Head, Tail, Tail

Tail, Head, Head

Tail, Head, Tail

Tail, Tail, Head

Tail, Tail, Tail

 Have students calculate the probabilities of the events:

P(3 Heads) = P(HHH) = 1/8

P(2 Heads) = P(HHT) + P(HTH) + P(THH) = 3/8

P(1 Head) = P(HTT) + P(THT) + P(TTH) = 3/8

P(0 Head) = P(TTT) = 1/8

 Instruct students to plot the graph on the screen. Program CyberPi to set

the bar colour and the numeric values represented by the bars.

Page 19

Example 4-2

1. import cyberpi

2.

3. cyberpi.display.clear()

4.

5. # 3 Heads:

6. cyberpi.display.set_brush(255, 65, 0)

7. cyberpi.barchart.add(1/8 * 200)

8.

9. # 2 Heads:

10. cyberpi.display.set_brush(255, 100, 0)

11. cyberpi.barchart.add(3/8 * 200)

12.

13. # 1 Head:

14. cyberpi.display.set_brush(255, 165, 0)

15. cyberpi.barchart.add(3/8 * 200)

16.

17. # 0 Head:

18. cyberpi.display.set_brush(255, 215, 0)

19. cyberpi.barchart.add(1/8 * 200)

Step 5.2 Summarise the methods of creating a bar chart on CyberPi’s screen.

 To graph a new data chart, remember to clear the screen by using this syntax:

cyberpi.display.clear()

 Define the colour of the bar by using this syntax:

cyberpi.display.set_brush()

The parameter inside the round bracket can be either the RGB colour code

(integers) or the name of the colour (e.g., ‘red’, ‘orange’, ‘yellow’, ‘green’, ‘cyan’,

‘blue’, ‘purple’, ‘white’, ‘black’).

 Add a numeric value to the bar by using this syntax:

cyberpi.barchart.add()

Page 20

Section 6 Recap (5 minutes)

Step 6.1 Summarise the key points learnt in this lesson.

 Review the concept of normal distribution and the examples demonstrated in

this lesson.

(Source: StackExchange Mathematics)

Page 21

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 Import cyberpi, random

 Display screen of CyberPi

 ‘cyberpi.console’

 ‘cyberpi.display’

 What if I need to use more

than one module, what

should I do in Python?

 How to create data charts

on CyberPi’s screen?

 How to use lists to store a

group of data

 How to modify data stored

in a list

 How to graph a bar chart

on CyberPi’s screen

Page 1

Lesson 5 Data Storage

Category: Python Level: Introductory Time Frame: 45 minutes

Core Subject Area: Computing

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

In this lesson, students will explore the data storage of a computer – in particular, the CPU

and memory usage. A computer’s CPU and memory usage fluctuate while the operating

system handles different tasks. The utilisation of memory affects the performance of the

CPU and hence the performance of the computer. Students will investigate the relationship

between the utilisation of memory and the performance of the computer using Python and

CyberPi.

Key Focus

 How to display charts on the display screen of CyberPi

 Use of more than one module in Python and how to call relevant functions

 Use of the ‘psutil’ module

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Describe the relationship between input and output devices and the CPU and memory

through simulation

 Write and execute algorithms to monitor the CPU and memory usage and demonstrate

the results using data charts

Page 2

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Understand the hardware and software components that make up computer systems,

and how they communicate with one another and with other systems

 Understand how instructions are stored and executed within a computer system;

understand how data of various types (including text, sounds and pictures) can be

represented and manipulated digitally, in the form of binary digits

Page 3

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-01: Recommend improvements to the design of computing devices, based on an

analysis of how users interact with the devices.

 2-DA-07: Represent data using multiple encoding schemes.

 2-DA-08: Collect data using computational tools and transform the data to make it

more useful and reliable.

 2-DA-09: Refine computational models based on the data they have generated.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

 2-IC-20: Compare tradeoffs associated with computing technologies that affect

people's everyday activities and career options.

Page 4

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python editor installed

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python editor installed

 CyberPi devices

 Type-C cables

 Worksheets

Page 5

Features of CyberPi

Page 6

Example Program

1. import cyberpi, psutil

2. # Import both 'cyberpi' and 'psutil' modules

3.

4. cyberpi.chart.clear()

5.

6. while True:

7. CPU = psutil.cpu_percent()

8. # Monitor the CPU usage

9. mem = psutil.virtual_memory()

10. mem_p = mem.percent

11. # Monitor the memory usage

12.

13. # Plot the line chart on the screen:

14. cyberpi.display.set_brush(0, 0, 255)

15. cyberpi.linechart.add(int(CPU))

16. cyberpi.display.set_brush(255, 255, 0)

17. cyberpi.linechart.add(int(mem_p))

18. # Report the CPU and memory usage data:

19. print("CPU:", CPU, "% Memory:", mem_p, "%")

Page 7

Pre-assessment

Ask students to have a look at the Task Manager (of the Window System) or the Activity

Monitor (of the macOS System) on the computer before the class.

Task Manager of the Window System Activity Monitor of the macOS System

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 Import cyberpi, random

 Display screen of CyberPi

 ‘cyberpi.display’

 ‘cyberpi.barchart’

Page 8

Procedures

Section 1 Introduction: CPU and Memory Usage (5 minutes)

Step 1.1 Explain the role of the CPU and memory.

 If students already have a basic understanding of the computer system, briefly

review the components of a computer through demonstration – for example,

bring computer components (or microcomputers) to the classroom and ask

students to identify the name of different parts.

(Source: © Oregon State University)

However, if this is your students’ first time to learn the computer components,

use the above figure to explain each component. Highlight the components as

follows:

 CPU

CPU stands for ‘Central Processing Unit’. It is the chip that contains all the

circuitries for performing arithmetic and logic operations and directing

data to and from memory.

 Memory

Like a human brain, computer memory is the storage space in the

computer system.

Page 9

Have students gain an initial understanding and impression of computer

components. Explain the ‘input–process–output’ model of information

processing in the computer system.

 Instruct students to open the Task Manager (of the Window System) or the

activity monitor (of the macOS System) and check the CPU usage and

memory.

Task Manager of the Window System

Page 10

Activity Monitor of the macOS System

Page 11

Section 2 Predict (3 minutes)

Step 2.1 Distribute the example program file to the class. Have students read the code

and discuss what the code can do before running it.

 Say: Like the Task Manager or Activity Monitor, this program can show you the

CPU and memory usage. Look through the scripts and consider how it displays

the CPU and memory usage.

1. import cyberpi

2. import psutil

3.

4. cyberpi.chart.clear()

5. while True:

6. CPU = psutil.cpu_percent()

7. mem = psutil.virtual_memory()

8. mem_p = mem.percent

9. cyberpi.display.set_brush(0, 0, 255)

10. cyberpi.linechart.add(int(CPU))

11. cyberpi.display.set_brush(255, 255, 0)

12. cyberpi.linechart.add(int(mem_p))

13. print("CPU:", CPU, "% Memory:", mem_p, "%")

 Instruct students to write down their predictions and annotate the code on the

worksheet.

 Ask students to identify the points below:

 The library for calling functions to monitor the CPU and memory usage

 The two variables plotted in the line chart;

 The function that plots the lines;

 The function that set the colour of the line.

Page 12

Section 3 Run (2 minutes)

Step 3.1 Ask students to run the example program and check against their predictions.

 Instruct students to write down their predictions and annotate the code.

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program.

What I Know What I Wonder What I Learnt

 Import cyberpi, random

 Display screen of CyberPi

 ‘cyberpi.display’

 ‘cyberpi.barchart’

 How can I create other

types of charts using

Python?

 What is going on inside my

computer? How does the

CPU usage affect it?

Page 13

Section 4 Investigate (20 minutes)

Step 4.1 Invite volunteer students to report and share their findings.

 Students should identify the functions as follows:

 The library for retrieving information on running processes and system

utilisation (such as the CPU and memory usage demonstrated in this

example program):

import psutil

 To retrieve data on the CPU usage:

psutil.cpu_percent()

Note: Have students write and run the code below in the Python editor to

see how this function works:

Example 5-1

1. import psutil, time

2.

3. while True:

4. CPU = psutil.cpu_percent()

5. print("CPU Usage:", CPU, "%")

6. time.sleep(0.2)

 To retrieve data on memory usage:

psutil.virtual_memory()

Note: Have students write and run the code below in the Python editor to

see how this function works:

Example 5-2

1. import psutil, time

2.

3. while True:

4. memory = psutil.virtual_memory()

5. print(memory)

6. time.sleep(0.2)

Page 14

Note: Ask students to look at the results displayed in the console:

This expression returns a set of data about the system memory usage,

including the total physical memory, the available memory that can be

given instantly to processes, the memory usage in percentage, etc.

To read the data that is needed, it is necessary to use the ‘memory.percent’ to

select the dataset of the memory usage in percentage.

 To plot the line:

cyberpi.linechart.add()

 To set the colour of the line:

cyberpi.display.set_brush()

Step 4.2 Have students run some tasks on their computer while executing the program.

Ask them to see how their operation may affect the CPU and memory usage.

Step 4.3 Explain how to measure and assess the performance of the CPU of the

computer.

 Say: We could use the percentage of the CPU usage as an indicator of the CPU

performance. However, it is difficult to assess it because a computer might

excel at some tasks but not do so well at others.

Page 15

 Explain: Four factors affect the CPU performance: the number of cores, the

clock speed or rate, the cache size, and the type of CPU.

 Explain the cores: A core is a processing unit of the CPU. The CPU can contain

more than one core. Computers nowadays have 4, 6, 8, and even 10 cores. The

more cores a computer has, the more power the computer gains to handle

tasks at the same time. Yet it does not mean that doubling the number of

cores will double a computer's performance or processing speed.

 Instruct students to use the ‘pustil’ functions to check the number of cores

their computers have.

Tip: Use the syntax: psutil.cpu_count()

Example 5-3

1. import psutil

2.

3. core = psutil.cpu_count()

4. print("Number of Cores:", core)

 Explain the clock speed: The clock speed or rate indicates how fast the CPU can

run. This is measured in megahertz (MHz) or gigahertz (GHz). The clock speed

describes the amount of tasks or activities the CPU can deal with in a second,

that is, the frequency of the CPU performance. A computer normally has a

maximum clock speed.

 Instruct students to use the ‘pustil’ functions to read the minimum and

maximum clock speed of their computers.

Tip: Use the syntax: psutil.cpu_freq()

Page 16

Example 5-4

1. import psutil

2.

3. speed = psutil.cpu_freq()

4. max_speed = speed.max

5. print("Maximum Clock Speed:", max_speed, "Mhz")

6. min_speed = speed.min

7. print("Minimum Clock Speed:", min_speed, "Mhz")

 Explain the cache size: Cache is a small amount of memory which is a part of

the CPU. It is used to temporarily hold instructions and data that the CPU is

likely to reuse.

 Briefly mention the two types of the processor: There are two types of CPU:

Complex Instruction Set Computing (CISC) and Reduced Instruction Set

Computing (RISC). The latter type of CPU is usually used in smartphones and

tablets. We would explore them in the future lesson.

 Have students discuss the features of lower and higher CPU performances

based on the above information. Ask them to summarise and fill out the table

below:

Lower CPU performance Higher CPU performance

Step 4.4 Explain the two types of computer memory: Random Access Memory (RAM)

and Read Only Memory (ROM).

 Explain the RAM: Random Access Memory, or the RAM, stores user programs

that control what the CPU does including the data used by these programs and

the results of operations performed by these programs. RAM is accessible to

the user. The memory size of RAM affects computer performance.

Page 17

RAM is a kind of volatile memory. It means that everything stored in RAM is

lost when the computer is switched off, even for an instant.

 Explain the ROM: Read Only Memory, or the ROM, stores the instructions a

computer needs to get itself started after the user turns on the power. As its

name indicates, ROM cannot be modified by the user, which means the data

stored in ROM can only be read by the user.

Unlike RAM, things stored in ROM will not be lost when the computer is

switched off. The data and instructions are still stored in ROM even when the

computer is switched off.

 Say: The Basic Input Output System is an example of a program that is stored

in ROM. The BIOS runs as soon as the power is turned on.

(Source: Wikimedia Commons © Toniperis)

Page 18

Section 5 Modify and Make (10 minutes)

Step 5.1 Have students work individually to create a CPU usage alarm based on the

example program.

 Ask students to add control structures and light effects to the example

program. Define the thresholds of the alarm and the corresponding alarm

indicators. For example, if the CPU usage exceeds a threshold of 70% usage,

CyberPi gives a red warning light; if the CPU usage is between 50% and 70%,

CyberPi lights up in orange (or amber).

 Encourage students to program other functions. For example, hint at adding

an alarm sound by using the syntax ‘cyberpi.audio.play_tone()’. This function can

make CyberPi play the sound of a buzzer. The first parameter in the round

bracket refers to the frequency of the buzzer in the range between 20Hz and

5000Hz. Remind students that they should use an appropriate frequency and

avoid high-frequency sounds to protect their ears. The second parameter

represents the duration of the sound.

Example 5-5

cyberpi.audio.play_tone(1047, 0.3)

cyberpi.audio.play_tone(262, 0.3)

 Remind students that if they want to add a chart title and display it on

CyberPi’s screen, they can use the syntax:

cyberpi.chart.set_name()

Note: Students may ignore one thing: the content of the chart title should be

strings. The values of the two variables ‘CPU’ and ‘mem_p’ are integers.

Students need to debug and convert the data type.

Page 19

Example 5-6

1. import cyberpi, psutil

2.

3. cyberpi.chart.clear()

4.

5. while True:

6. CPU = psutil.cpu_percent()

7. mem = psutil.virtual_memory()

8. mem_p = mem.percent

9.

10. cyberpi.chart.set_name("CPU: " + str(CPU) + "%")

11.

12. cyberpi.display.set_brush(255, 0, 0)

13. cyberpi.linechart.add(int(CPU))

14. cyberpi.display.set_brush(0, 0, 255)

15. cyberpi.linechart.add(int(mem_p))

16.

17. if CPU >= 70:

18. cyberpi.led.on("red")

19. cyberpi.audio.play_tone(1047, 0.3)

20.

21. elif 70 > CPU >= 50:

22. cyberpi.led.on("orange")

23. cyberpi.audio.play_tone(262, 0.3)

24.

25. else:

26. cyberpi.led.on("white")

Page 20

Section 6 Recap (5 minutes)

Step 6.1 Summarise features of the CPU performance.

Lower CPU performance Higher CPU performance

Single-core Multi-core

Low clock speed High clock speed

Small or no cache Large, multi-level cache

 Summarise the key points:

 A multi-core CPU will have a higher performance than a single-core CPU

with the same clock speed.

 A CPU with a high clock speed will process more instructions per second

and will, therefore, have a higher performance than the equivalent CPU

with the lower clock speed.

 A larger cache size suggests a higher CPU performance because the CPU

will spend less time accessing RAM so programs will execute faster.

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 Import cyberpi, random

 Display screen of CyberPi

 ‘cyberpi.display’

 ‘cyberpi.barchart’

 How can I create other

types of charts using

Python?

 What is going on inside my

computer? How does the

CPU usage affect it?

 Import cyberpi, psutil

 ‘cyberpi.linechart’

 The roles of the CPU and

computer memory

 Factors that affect the

CPU performance

Page 1

Lesson 6 Remix Culture

Category: Python Level: Introductory Time Frame: 45 minutes

Core Subject Area: Computing Supplementary Subject Area: Music

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

This lesson will introduce the use of functions in Python. A function is a set of well-defined,

organised, and reusable code that can perform a specific task when it is called. Using

functions can reduce duplication of code, improve the clarity of code, and decompose

complex problems into simpler pieces while creating complex algorithms. In this lesson,

students will explore the use of functions by creating functions for musical sounds.

Students will use the computer keyboard to combine sound effects and play sounds.

Key Focus

 Use of functions

 Use of the ‘pynput’ module

 Audio features of CyberPi

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Recognise the syntax and features of a function in Python, including the keyword, the

rule of indentation, the method to call and reuse the function

 Write and execute programs to control and monitor the computer keyboard input by

using the ‘pynput’ functions

 Create and execute functions to store and modify bars of music notes in Python

Page 2

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Understand several key algorithms that reflect computational thinking; use logical

reasoning to compare the utility of alternative algorithms for the same problem

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Make appropriate use of data structures; design and develop modular programs that use

procedures or functions

 Understand how instructions are stored and executed within a computer system;

understand how data of various types (including text, sounds and pictures) can be

represented and manipulated digitally, in the form of binary digits

 Undertake creative projects that involve selecting, using, and combining multiple

applications, preferably across a range of devices, to achieve challenging goals,

including collecting and analysing data and meeting the needs of known users

 Create, re-use, revise and re-purpose digital artefacts for a given audience, with

attention to trustworthiness, design and usability

Page 3

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-02: Design projects that combine hardware and software components to collect

and exchange data.

 2-DA-08: Collect data using computational tools and transform the data to make it

more useful and reliable.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-13: Decompose problems and subproblems into parts to facilitate the design,

implementation, and review of programs.

 2-AP-14: Create procedures with parameters to organize code and make it easier to

reuse.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

 2-IC-20: Compare tradeoffs associated with computing technologies that affect

people's everyday activities and career options.

 2-IC-21: Discuss issues of bias and accessibility in the design of existing technologies.

 2-IC-22: Collaborate with many contributors through strategies such as crowdsourcing

or surveys when creating a computational artifact.

Page 4

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python code editor installed

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python code editor installed

 CyberPi devices

 Type-C cables

 Worksheets

Page 5

Features of CyberPi

Page 6

Example Program

Page 7

1. import cyberpi

2. from pynput.keyboard import Key, Listener

3. # Monitor the keyboard input

4. cyberpi.audio.set_vol(50)

5. # Adjust the volume on CyberPi

6. def bar1():

7. cyberpi.audio.play_music(60, 0.2)

8. cyberpi.audio.play_music(64, 0.2)

9. cyberpi.audio.play_music(67, 0.2)

10. def bar2():

11. cyberpi.audio.play_music(64, 0.2)

12. cyberpi.audio.play_music(65, 0.2)

13. cyberpi.audio.play_music(69, 0.2)

14. def bar3():

15. cyberpi.audio.play_music(64, 0.2)

16. cyberpi.audio.play_music(67, 0.2)

17. cyberpi.audio.play_music(71, 0.2)

18. def bar4():

19. cyberpi.audio.play_music(65, 0.2)

20. cyberpi.audio.play_music(69, 0.2)

21. cyberpi.audio.play_music(72, 0.2)

22. def on_press(key):

23. if key.char == "1":

24. # A key produces a character value '1'

25. cyberpi.led.on("red")

26. bar1()

27. if key.char == "2":

28. # A key produces a character value '2'

29. cyberpi.led.on("orange")

30. bar2()

31. if key.char == "3":

32. # A key produces a character value '3'

33. cyberpi.led.on("yellow")

34. bar3()

35. if key.char == "4":

36. # A key produces a character value '4'

37. cyberpi.led.on("green")

38. bar4()

39. def on_release(key):

40. cyberpi.led.off()

41. pass

42. with Listener(on_press=on_press, on_release=on_release) as listener:

43. # Collect events until released

44. listener.join()

Page 8

Pre-assessment

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

Page 9

Procedures

Section 1 Introduction: Remix Culture and Creativity (2 minutes)

Step 1.1 Introduce the remix culture.

 Explain the concept of remix culture: Remix culture refers to a cultural practice

of artists that create and produce creative works or products by combining or

editing existing materials or works. Sometimes, remix culture is also called

read-write culture, which indicates the cultural artefacts may not be

considered as the original work of someone and hence the ‘cultural collective

work’.

 Say: Digital technologies are suited for adaptation and remixing and facilitate

the remix culture creation. In music, for example, we can use music applications

to edit and modify a piece of work and combine different parts of existing

songs to create a new piece of music.

Page 10

Section 2 Predict (5 minutes)

 Step 2.1 Distribute the example program file to the class. Have students read the

code and discuss what the code can do before running it.

 Introduce the example program: This program allows you to remix a song by

combining different segments of chords. Before you run the program, read the

script, identify the new syntax in the example program, and guess how it re-

organises the track.

Page 11

1. import cyberpi

2. from pynput.keyboard import Key, Listener

3. cyberpi.audio.set_vol(50)

4.

5. def bar1():

6. cyberpi.audio.play_music(60, 0.2)

7. cyberpi.audio.play_music(64, 0.2)

8. cyberpi.audio.play_music(67, 0.2)

9.

10. def bar2():

11. cyberpi.audio.play_music(64, 0.2)

12. cyberpi.audio.play_music(65, 0.2)

13. cyberpi.audio.play_music(69, 0.2)

14.

15. def bar3():

16. cyberpi.audio.play_music(64, 0.2)

17. cyberpi.audio.play_music(67, 0.2)

18. cyberpi.audio.play_music(71, 0.2)

19.

20. def bar4():

21. cyberpi.audio.play_music(65, 0.2)

22. cyberpi.audio.play_music(69, 0.2)

23. cyberpi.audio.play_music(72, 0.2)

24.

25. def on_press(key):

26. if key.char == "1":

27. cyberpi.led.on("red")

28. bar1()

29. if key.char == "2":

30. cyberpi.led.on("orange")

31. bar2()

32. if key.char == "3":

33. cyberpi.led.on("yellow")

34. bar3()

35. if key.char == "4":

36. cyberpi.led.on("green")

37. bar4()

38.

39. def on_release(key):

40. cyberpi.led.off()

41. pass

42.

43. with Listener(on_press=on_press, on_release=on_release) as listener:

44. listener.join()

Page 12

 Ask students to think about the questions below:

 Identify the new module that can monitor the input from your keyboard.

 What is meant by the Python keyword ‘def’?

 Why does it separate the set of expressions within each ‘def’ code block?

 How to produce interactive sound and light effects?

 Instruct students to write down their predictions and annotate the code on the

worksheet.

Page 13

Section 3 Run (3 minutes)

Step 3.1 Ask students to run the example program and check against their predictions.

 Instruct students to write down their prediction and annotate the code.

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program. If students get some ideas about what they

would learn in this lesson, ask them to try to write down some main points.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

 What is meant by the word

‘def’?

 How to play sounds or

music through CyberPi?

Page 14

Section 4 Investigate (20 minutes)

Step 4.1 Introduce the ‘pynput’ module.

 Instruct students to identify the line of code below and figure out what is

different about this statement.

from pynput.keyboard import Key, Listener

 Say: In the example program, the ‘pynput’ module is added into the Python

code editor. The ‘pynput’ module is a third-party library that controls and

monitors input devices.

 Explain the ‘pynput’ module: In the example, we call relevant ‘pynput’ functions

to monitor keyboard input by obtaining the current status of the keyboard. The

program can monitor which key is pressed or released. ‘pynput’ can also

monitor mouse input and even control the keyboard and mouse. For example,

some functions can make the computer type a word in the text.

 Explain the syntax: In the example, the ‘from’ indicates the source of the library

that we want to import. The ‘import’ indicates the set of functions we need in

the library – the ‘Key, Listener’ means we want the functions that can monitor

the keyboard input.

 Instruct students to utilise ‘pynput’ to control the mouse. Demonstrate an

example program as follow:

 Send the file to students and ask them to run the program first.

Page 15

Example 6-1

1. import cyberpi

2. from pynput.mouse import Button, Controller

3. # Control the mouse

4.

5. mouse = Controller()

6.

7. while True:

8. if cyberpi.is_tiltleft():

9. # Tilt CyberPi left

10. mouse.move(-5, 0)

11. # Move the mouse cursor relative to current position

12. print(mouse.position)

13.

14. if cyberpi.is_tiltright():

15. # Tilt CyberPi right

16. mouse.move(5, 0)

17. print(mouse.position)

18.

19. if cyberpi.controller.is_press("a"):

20. # Press CyberPi's Button A

21. mouse.press(Button.left)

22. mouse.release(Button.left)

23. # Press and release the left mouse button

 Then ask students to add new functions that make the mouse cursor move

up and down by tilting CyberPi forward and backward.

Tips: The syntax for reference:

cyberpi.is_tiltforward; cyberpi.is_tiltback

 CyberPi is tilted forward CyberPi is tilted backward

Page 16

Example 6-2

1. if cyberpi.is_tiltforward():

2. mouse.move(0, -5)

3.

4. if cyberpi.is_tiltback():

5. mouse.move(0, 5)

 Ask students to add a new function to program the right mouse button to

be remotely controlled by CyberPi.

Example 6-3

1. if cyberpi.controller.is_press("b"):

2. mouse.press(Button.right)

3. mouse.press(Button.right)

 Summarise: The keyword ‘Key’ refers to the keyboard. The keyword ‘Button’

refers to the mouse. The keyword ’Listener’ indicates the action of monitoring

an input device while the keyword ‘Controller’ indicates the action of controlling

an input device.

Step 4.2 Explain the use of functions.

 Instruct students to identify the lines of code below in the example program:

Line 5: def bar1():

Line 10: def bar2():

Line 15: def bar3():

Line 20: def bar4():

Line 25: def on_press(key):

Line 39: def on_release(key):

 Say: The keyword ‘def’ indicates that the following lines of code are a function.

 Explain: A function is a group of related statements that performs a specific

task. A function contains a set of well-defined, organised, and reusable code.

To create a function, we need to use the keyword ‘def’ as the function header.

Page 17

To define the function, we need to use the indentation to indicate a group of

code belongs to the function. In the example program, for instance, we create

the functions ‘bar1’, ‘bar2’, ‘bar3’, and ‘bar4’ to store and represent the bars.

 Remind students that the name of a function, like the name of a variable,

should be readable and explanatory.

 Instruct students to define a function. Have them pay attention to the points

as follows:

 Start with the keyword ‘def’ and do not forget the colon;

 Indent the statement; otherwise, an error will occur.

 Explain the statement below: The word ‘key’ in the round brackets is a

parameter that indicates the input device.

def on_press(key)

def on_release(key)

Step 4.3 Explain how to play sounds.

 Instruct students to identify the lines of code below:

key.char == “1”

 Explain: This expression is to check whether Key ‘1’ is pressed or not; if Key ‘1’ is

pressed (i.e., the statement is ‘True’), execute the ‘bar1’ function.

We can modify the parameters to use other characters such as ‘a’, ‘b’, and ‘c’.

Page 18

Section 5 Modify and Make (10 minutes)

Step 5.1 Instruct students working individually to modify the example program by

completing the task below:

 Task 1: Modify the parameters in the example program. Use letters instead to

replace the numeric parameters.

Example 6-4

key.char == “a”

key.char == “b”

key.char == “c”

key.char == “d”

Note: Remind students that they should use lowercase letters.

 Task 2: Modify the ‘bar’ functions. Find some pieces of songs from music

textbooks and combine different parts of them together to make a new song.

Consider how to combine the sound effects and LED lights.

Page 19

Example 6-5

1. def bar1():

2. cyberpi.led.on("green", id=1)

3. cyberpi.audio.play_music(72, 0.4)

4. cyberpi.audio.play_music(67, 0.4)

5. cyberpi.led.on("green", id=2)

6. cyberpi.audio.play_music(64, 0.2)

7. cyberpi.audio.play_music(64, 0.1)

8. cyberpi.audio.play_music(65, 0.1)

9. cyberpi.audio.play_music(67, 0.4)

10. cyberpi.led.on("green", id=3)

11. cyberpi.audio.play_music(72, 0.1)

12. cyberpi.audio.play_music(71, 0.1)

13. cyberpi.audio.play_music(72, 0.1)

14. cyberpi.audio.play_music(74, 0.1)

15. cyberpi.audio.play_music(72, 0.1)

16. cyberpi.audio.play_music(71, 0.1)

17. cyberpi.audio.play_music(72, 0.1)

18. cyberpi.audio.play_music(74, 0.1)

19. cyberpi.led.on("green", id=4)

20. cyberpi.audio.play_music(72, 0.1)

21. cyberpi.audio.play_music(71, 0.1)

22. cyberpi.audio.play_music(72, 0.1)

23. cyberpi.audio.play_music(74, 0.1)

24. cyberpi.audio.play_music(72, 0.4)

25.

26.

27. def on_press(key):

28. if key.char == "1":

29. bar1()

Page 20

Example 6-6

1. def bar2():

2. cyberpi.led.on("orange", id=1)

3. cyberpi.audio.play_music(71, 0.1)

4. cyberpi.audio.play_music(69, 0.1)

5. cyberpi.audio.play_music(68, 0.1)

6. cyberpi.audio.play_music(69, 0.1)

7. cyberpi.led.on("orange", id=2)

8. cyberpi.audio.play_music(72, 0.2)

9. time.sleep(0.2)

10. cyberpi.audio.play_music(74, 0.1)

11. cyberpi.audio.play_music(72, 0.1)

12. cyberpi.audio.play_music(71, 0.1)

13. cyberpi.audio.play_music(72, 0.1)

14. cyberpi.led.on("orange", id=3)

15. cyberpi.audio.play_music(76, 0.2)

16. time.sleep(0.2)

17. cyberpi.audio.play_music(77, 0.1)

18. cyberpi.audio.play_music(76, 0.1)

19. cyberpi.audio.play_music(75, 0.1)

20. cyberpi.audio.play_music(76, 0.1)

21. cyberpi.led.on("orange", id=4)

22. cyberpi.audio.play_music(83, 0.1)

23. cyberpi.audio.play_music(81, 0.1)

24. cyberpi.audio.play_music(80, 0.1)

25. cyberpi.audio.play_music(81, 0.1)

26. cyberpi.audio.play_music(83, 0.1)

27. cyberpi.audio.play_music(81, 0.1)

28. cyberpi.audio.play_music(80, 0.1)

29. cyberpi.audio.play_music(81, 0.1)

30. cyberpi.led.on("orange", id=5)

31. cyberpi.audio.play_music(84, 0.2)

32.

33.

34. def on_press(key):

35. if key.char == "2":

36. bar2()

Page 21

Section 6 Recap (5 minutes)

Step 6.1 Summarise the key points learnt in this lesson:

 Summarise why and how to define functions.

 Summarise how to control and monitor the input device by using the ‘pynput’

module.

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

 What is meant by the word

‘def’?

 How to play sounds or

music through CyberPi?

 The ‘pynput’ module

 Import cyberpi, pynput

 Functions

 Audio features of CyberPi

	Lesson 1~2 Python Quizzes
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: CyberPi and API (30 minutes)
	Section 2 Predict and Run (15 minutes)
	Section 3 Investigate (20 minutes)
	Example 1-1 (a)
	Example 1-1 (b)
	Example 1-2

	Section 4 Modify and Make (20 minutes)
	Example – Task 3
	Example – Task 3 (Advanced)

	Section 5 Recap (5 minutes)

	Py102 Lesson 03 Lesson Plan.pdf
	Lesson 3 Data Protection and Passwords
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: Importance of Password Security (6 minutes)
	Section 2 Predict (6 minutes)
	Section 3 Run (3 minutes)
	Section 3 Investigate (10 minutes)
	Section 4 Modify (10 minutes)
	Example – Task 1
	Example – Task 3
	Example – Task 4

	Section 5 Make (8 minutes)
	Example 3-1

	Section 6 Recap (2 minutes)

	Py102 Lesson 04 Lesson Plan.pdf
	Lesson 4 Normal Distribution
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: Normal Distributions (8 minutes)
	Section 2 Predict (4 minutes)
	Section 3 Run (3 minutes)
	Section 4 Investigate (15 minutes)
	Section 5 Modify and Make (10 minutes)
	Example 4-1 (a)
	Example 4-1 (b)
	Example 4-2

	Section 6 Recap (5 minutes)

	Py102 Lesson 05 Lesson Plan.pdf
	Lesson 5 Data Storage
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: CPU and Memory Usage (5 minutes)
	Section 2 Predict (3 minutes)
	Section 3 Run (2 minutes)
	Section 4 Investigate (20 minutes)
	Example 5-1
	Example 5-2
	Example 5-3
	Example 5-4

	Section 5 Modify and Make (10 minutes)
	Example 5-5
	Example 5-6

	Section 6 Recap (5 minutes)

	Py102 Lesson 06 Lesson Plan.pdf
	Lesson 6 Remix Culture
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: Remix Culture and Creativity (2 minutes)
	Section 2 Predict (5 minutes)
	Section 3 Run (3 minutes)
	Section 4 Investigate (20 minutes)
	Example 6-1
	Example 6-2
	Example 6-3

	Section 5 Modify and Make (10 minutes)
	Example 6-4
	Example 6-5
	Example 6-6

	Section 6 Recap (5 minutes)

