

Page 1

Lesson 1~2 Python Quizzes

Worksheet

K-W-L Chart

What I Know What I Wonder What I Learnt

Page 2

New Commands

import cyberpi

① Screen: cyberpi.display, cyberpi.console

cyberpi.display.clear()

cyberpi.console.print()

cyberpi.console.println()

② LED Strip: cyberpi.led

cyberpi.led.off()

cyberpi.led.off(id=“3”)

cyberpi.led.on()

cyberpi.led.on(“green”, id=“all”)

cyberpi.led.on(“red”, id=3)

cyberpi.led.show(“orange yellow cyan blue purple”)

cyberpi.led.play(name=“firefly”)

③ Buttons A and B: cyberpi.controllor.is_press()

cyberpi.controller.is_press(“a”)

cyberpi.controller.is_press(“b”)

①

②

③

④

Page 3

④ Joystick: cyberpi.controller.is_press()

cyberpi.controller.is_press(“up”)

cyberpi.controller.is_press(“down”)

cyberpi.controller.is_press(“right”)

cyberpi.controller.is_press(“left”)

cyberpi.controller.is_press(“middle”)

Page 4

Procedures

Features of CyberPi

①

②

③

④

⑤

Page 5

Step 1 Predict

Read the program.

1. import cyberpi

2.

3. cyberpi.display.clear()

4. cyberpi.led.off()

5.

6. cyberpi.console.println("A - True")

7. cyberpi.console.println("B - False")

8.

9. cyberpi.led.on(255, 255, 255)

10. cyberpi.console.println("Python is a compiled language.")

11. cyberpi.console.println("Your Answer:")

12.

13. while True:

14.

15. if cyberpi.controller.is_press("a"):

16. cyberpi.led.on(255, 0, 0)

17. cyberpi.console.println("Incorrect.")

18. cyberpi.console.println("Correct Answer: False")

19. break

20.

21. if cyberpi.controller.is_press("b"):

22. cyberpi.led.on(0, 255, 0)

23. cyberpi.console.println("Correct!")

24. break

Questions:

 Which module is imported? Explain why we should import this module.

 How to print text on the screen?

 How to light up/off the LED strip?

 How to set the light colour? How to represent light colours in Python?

 How to enter the answer?

 How to evaluate the answer?

Page 6

Step 2 Run

Run the program.

Step 3 Investigate

Investigate the physical components and API code samples of the screen, the LED strip, the

buttons, and the joystick.

Step 4 Modify and Make

Task 1: Modify the quiz and the answer in the example program.

Task 2: Modify the lighting effects.

Tip:

Firefly: cyberpi.led.play(name=“firefly”)

Rainbow: cyberpi.led.play(name=“rainbow”)

Spoondrift: cyberpi.led.play(name=“spoondrift”)

Meteor Shower: cyberpi.led.play(name=“meteor_blue”);

cyberpi.led.play(name=“meteor_green”)

Flash: cyberpi.led.play(name=“flash_orange”); cyberpi.led.play(name=“flash_red”)

Task 3: Use the joystick instead to enter the answer.

Page 1

Lesson 3 Data Protection and Passwords

Worksheet

K-W-L Chart

What I Know What I Wonder What I Learnt

Features of CyberPi

Page 2

Procedures

Step 1 Predict

Read the program.

1. import cyberpi

2.

3. cyberpi.display.clear()

4. t = 0

5.

6. while True:

7. print("Create a password")

8. pin_1 = input("Type password: ")

9. pin_2 = input("Type password again: ")

10. if pin_2 == pin_1:

11. print("Success!")

12. break

13. else:

14. print("Passwords don't match. Try again.")

15.

16.

17. print("Sign in your account")

18. cyberpi.console.println("Sign in")

19.

20. while t < 3:

21. pin = input("Password: ")

22. cyberpi.console.print("Password: ")

23. cyberpi.console.println(pin)

24. if pin == pin_1:

25. cyberpi.console.println("Success!")

26. break

27. else:

28. cyberpi.console.println("Incorrect. Try again.")

29. t += 1

30. if t == 3:

31. cyberpi.console.println("Too many failed attempts.")

Page 3

Questions:

 How to create a password for a new account?

 How to verify the password entered by a user?

 Compare the two while loops used in the example program. What is the

difference between them?

 Identify the syntax that enables this function: A user is given 3 attempts to

enter the account password. If the user fails 3 times, the user cannot enter

the password any more.

Step 2 Run

Run the program.

Step 3 Investigate

Answer the questions.

Page 4

Step 4 Modify

Task 1: Add the function that allows the user to create a username when the user signs in.

Task 2: Add some lighting effects as the indicator. Use what you have learnt to program

CyberPi.

Tip:

cyberpi.led.on(255, 255, 255)

cyberpi.led.on(“green”, id = “all”)

cyberpi.led.on(“red”, id = 3)

cyberpi.led.show(“orange yellow cyan blue purple”)

cyberpi.led.play(name = “firefly”)

cyberpi.led.off(id = “3”)

Task 3: Modify the second ‘while’ loop. Use the LED strip as an indicator to remind the

number of attempts.

Task 4: Modify the conditional expressions. Verify three conditions as follows:

The input username is incorrect;

The input password is incorrect;

Both the username and password are incorrect.

Page 5

Step 5 Make

Develop a bank card reader

 First, create a PIN for the bank account and store it on the computer.

 When a sender starts a transaction, ask the sender to type the name (or

other identification code) of the receiver and the amount of the transit

money.

 Then ask the sender to type the PIN.

 Generate a random 4-digit verification code and display it on CyberPi’s

screen. Ask the sender to enter the verification code.

 Check the PIN and verification code. If both are correct, display the

transaction information (including the receiver’s name or ID and the

transaction amount) on the screen.

However, if either the PIN or the verification code is incorrect, ask the sender

to type them again. The sender has limited attempts (for example, 3

attempts).

 Ask the sender to check the transaction information and confirm the

transaction by pressing Button B of CyberPi.

Page 1

Lesson 4 Normal Distribution

Worksheet

K-W-L Chart

What I Know What I Wonder What I Learnt

New Commands

cyberpi.display.set_brush()

cyberpi.barchart.add()

Page 2

Features of CyberPi

Page 3

Procedures

Step 1 Predict

Read the program.

Page 4

1. import cyberpi, random

2.

3. cyberpi.display.clear()

4.

5. n = int(input("The number of times to roll 2 dice: "))

6. t = 0

7. sum_list = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

8. count_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

9.

10. while t < n:

11. dice_x = random.randint(1, 6)

12. dice_y = random.randint(1, 6)

13. print("(", dice_x, ",", dice_y, ")")

14. result = dice_x + dice_y

15. t += 1

16. sum_index = sum_list.index(result)

17. count_list[sum_index] += 1

18.

19. cyberpi.display.set_brush(128, 0, 0)

20. cyberpi.barchart.add(round(count_list[0]/n * 200, 2))

21. cyberpi.display.set_brush(220, 20, 60)

22. cyberpi.barchart.add(round(count_list[1]/n * 200, 2))

23. cyberpi.display.set_brush(255, 0, 0)

24. cyberpi.barchart.add(round(count_list[2]/n * 200, 2))

25. cyberpi.display.set_brush(205, 92, 92)

26. cyberpi.barchart.add(round(count_list[3]/n * 200, 2))

27. cyberpi.display.set_brush(233, 150, 122)

28. cyberpi.barchart.add(round(count_list[4]/n * 200, 2))

29. cyberpi.display.set_brush(255, 69, 0)

30. cyberpi.barchart.add(round(count_list[5]/n * 200, 2))

31. cyberpi.display.set_brush(255, 165, 0)

32. cyberpi.barchart.add(round(count_list[6]/n * 200, 2))

33. cyberpi.display.set_brush(255, 215, 0)

34. cyberpi.barchart.add(round(count_list[7]/n * 200, 2))

35. cyberpi.display.set_brush(240, 230, 140)

36. cyberpi.barchart.add(round(count_list[8]/n * 200, 2))

37. cyberpi.display.set_brush(255, 255, 0)

38. cyberpi.barchart.add(round(count_list[9]/n * 200, 2))

39. cyberpi.display.set_brush(154, 205, 50)

40. cyberpi.barchart.add(round(count_list[10]/n * 200, 2))

Page 5

Step 2 Run

Run the program.

Step 3 Investigate

Investigate the points below:

 The modules imported in this program;

 The variables displayed in the bar chart;

 Are ‘sum_list’ and ‘count_list’ variables? What are the values of them?

 The function that sets the colour of the bar chart;

 The function that creates the bars.

Step 4 Modify and Make

Task: Simulate the experiment of tossing two coins together. Calculate all the possible

outcomes in this experiment and visualise the distribution with a bar chart.

Head, Head, Head

Page 1

Lesson 5 Data Storage

Worksheet

K-W-L Chart

What I Know What I Wonder What I Learnt

New Commands

import psutil

psutil.cpu_percent()

psutil.cpu_count()

psutil.cpu_freq()

psutil.virtual_memory()

cyberpi.linechart.add()

cyberpi.chart.set_name()

cyberpi.audio.play_tone()

Page 2

Features of CyberPi

Page 3

Procedures

Step 1 Predict

Read the program.

1. import cyberpi

2. import psutil

3.

4. cyberpi.chart.clear()

5. while True:

6. CPU = psutil.cpu_percent()

7. mem = psutil.virtual_memory()

8. mem_p = mem.percent

9. cyberpi.display.set_brush(0, 0, 255)

10. cyberpi.linechart.add(int(CPU))

11. cyberpi.display.set_brush(255, 255, 0)

12. cyberpi.linechart.add(int(mem_p))

13. print("CPU:", CPU, "% Memory:", mem_p, "%")

Step 2 Run

Run the program.

Step 3 Investigate

Investigate the points below:

 The library for calling functions to monitor the CPU and memory usage

 The two variables plotted in the line chart;

 The function that plots the lines;

 The function that set the colour of the line.

Page 4

Step 4 Modify and Make

Task: Add control structures and light effects to the example program. Define the

thresholds of the alarm and the corresponding alarm indicators.

Note: CPU performance

Lower CPU performance Higher CPU performance

Single-core Multi-core

Low clock speed High clock speed

Small or no cache Large, multi-level cache

Page 1

Lesson 6 Remix Culture

Category: Python Level: Introductory Time Frame: 45 minutes

Core Subject Area: Computing Supplementary Subject Area: Music

Ages: 11~14 years old Year Groups: Key Stage 3 (UK) / Grades 6–8 (US)

Overview

This lesson will introduce the use of functions in Python. A function is a set of well-defined,

organised, and reusable code that can perform a specific task when it is called. Using

functions can reduce duplication of code, improve the clarity of code, and decompose

complex problems into simpler pieces while creating complex algorithms. In this lesson,

students will explore the use of functions by creating functions for musical sounds.

Students will use the computer keyboard to combine sound effects and play sounds.

Key Focus

 Use of functions

 Use of the ‘pynput’ module

 Audio features of CyberPi

Intended Learning Outcomes

By the end of this lesson, students will be able to:

 Recognise the syntax and features of a function in Python, including the keyword, the

rule of indentation, the method to call and reuse the function

 Write and execute programs to control and monitor the computer keyboard input by

using the ‘pynput’ functions

 Create and execute functions to store and modify bars of music notes in Python

Page 2

Content Standards

 (UK)

 National Curriculum in England – Computing Programmes of Study: Key Stage 3

 Design, use and evaluate computational abstractions that model the state and

behaviour of real-world problems and physical systems

 Understand several key algorithms that reflect computational thinking; use logical

reasoning to compare the utility of alternative algorithms for the same problem

 Use two or more programming languages, at least one of which is textual, to solve a

variety of computational problems

 Make appropriate use of data structures; design and develop modular programs that use

procedures or functions

 Understand how instructions are stored and executed within a computer system;

understand how data of various types (including text, sounds and pictures) can be

represented and manipulated digitally, in the form of binary digits

 Undertake creative projects that involve selecting, using, and combining multiple

applications, preferably across a range of devices, to achieve challenging goals,

including collecting and analysing data and meeting the needs of known users

 Create, re-use, revise and re-purpose digital artefacts for a given audience, with

attention to trustworthiness, design and usability

Page 3

 (US)

 CSTA K-12 Computer Science Standards: Grades 6~8

 2-CS-02: Design projects that combine hardware and software components to collect

and exchange data.

 2-DA-08: Collect data using computational tools and transform the data to make it

more useful and reliable.

 2-AP-11: Create clearly named variables that represent different data types and

perform operations on their values.

 2-AP-12: Design and iteratively develop programs that combine control structures,

including nested loops and compound conditionals.

 2-AP-13: Decompose problems and subproblems into parts to facilitate the design,

implementation, and review of programs.

 2-AP-14: Create procedures with parameters to organize code and make it easier to

reuse.

 2-AP-16: Incorporate existing code, media, and libraries into original programs, and give

attribution.

 2-IC-20: Compare tradeoffs associated with computing technologies that affect

people's everyday activities and career options.

 2-IC-21: Discuss issues of bias and accessibility in the design of existing technologies.

 2-IC-22: Collaborate with many contributors through strategies such as crowdsourcing

or surveys when creating a computational artifact.

Page 4

Preparation

 For the teacher:

 A laptop or desktop with mBlock Python code editor installed

 A CyberPi device

 A Type-C cable

 Lesson plan

 Worksheet

 For students:

 Laptops or desktops with mBlock Python code editor installed

 CyberPi devices

 Type-C cables

 Worksheets

Page 5

Features of CyberPi

Page 6

Example Program

Page 7

1. import cyberpi

2. from pynput.keyboard import Key, Listener

3. # Monitor the keyboard input

4. cyberpi.audio.set_vol(50)

5. # Adjust the volume on CyberPi

6. def bar1():

7. cyberpi.audio.play_music(60, 0.2)

8. cyberpi.audio.play_music(64, 0.2)

9. cyberpi.audio.play_music(67, 0.2)

10. def bar2():

11. cyberpi.audio.play_music(64, 0.2)

12. cyberpi.audio.play_music(65, 0.2)

13. cyberpi.audio.play_music(69, 0.2)

14. def bar3():

15. cyberpi.audio.play_music(64, 0.2)

16. cyberpi.audio.play_music(67, 0.2)

17. cyberpi.audio.play_music(71, 0.2)

18. def bar4():

19. cyberpi.audio.play_music(65, 0.2)

20. cyberpi.audio.play_music(69, 0.2)

21. cyberpi.audio.play_music(72, 0.2)

22. def on_press(key):

23. if key.char == "1":

24. # A key produces a character value '1'

25. cyberpi.led.on("red")

26. bar1()

27. if key.char == "2":

28. # A key produces a character value '2'

29. cyberpi.led.on("orange")

30. bar2()

31. if key.char == "3":

32. # A key produces a character value '3'

33. cyberpi.led.on("yellow")

34. bar3()

35. if key.char == "4":

36. # A key produces a character value '4'

37. cyberpi.led.on("green")

38. bar4()

39. def on_release(key):

40. cyberpi.led.off()

41. pass

42. with Listener(on_press=on_press, on_release=on_release) as listener:

43. # Collect events until released

44. listener.join()

Page 8

Pre-assessment

Have students fill out the ‘What I Know’ column of the K-W-L chart before the class.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

Page 9

Procedures

Section 1 Introduction: Remix Culture and Creativity (2 minutes)

Step 1.1 Introduce the remix culture.

 Explain the concept of remix culture: Remix culture refers to a cultural practice

of artists that create and produce creative works or products by combining or

editing existing materials or works. Sometimes, remix culture is also called

read-write culture, which indicates the cultural artefacts may not be

considered as the original work of someone and hence the ‘cultural collective

work’.

 Say: Digital technologies are suited for adaptation and remixing and facilitate

the remix culture creation. In music, for example, we can use music applications

to edit and modify a piece of work and combine different parts of existing

songs to create a new piece of music.

Page 10

Section 2 Predict (5 minutes)

 Step 2.1 Distribute the example program file to the class. Have students read the

code and discuss what the code can do before running it.

 Introduce the example program: This program allows you to remix a song by

combining different segments of chords. Before you run the program, read the

script, identify the new syntax in the example program, and guess how it re-

organises the track.

Page 11

1. import cyberpi

2. from pynput.keyboard import Key, Listener

3. cyberpi.audio.set_vol(50)

4.

5. def bar1():

6. cyberpi.audio.play_music(60, 0.2)

7. cyberpi.audio.play_music(64, 0.2)

8. cyberpi.audio.play_music(67, 0.2)

9.

10. def bar2():

11. cyberpi.audio.play_music(64, 0.2)

12. cyberpi.audio.play_music(65, 0.2)

13. cyberpi.audio.play_music(69, 0.2)

14.

15. def bar3():

16. cyberpi.audio.play_music(64, 0.2)

17. cyberpi.audio.play_music(67, 0.2)

18. cyberpi.audio.play_music(71, 0.2)

19.

20. def bar4():

21. cyberpi.audio.play_music(65, 0.2)

22. cyberpi.audio.play_music(69, 0.2)

23. cyberpi.audio.play_music(72, 0.2)

24.

25. def on_press(key):

26. if key.char == "1":

27. cyberpi.led.on("red")

28. bar1()

29. if key.char == "2":

30. cyberpi.led.on("orange")

31. bar2()

32. if key.char == "3":

33. cyberpi.led.on("yellow")

34. bar3()

35. if key.char == "4":

36. cyberpi.led.on("green")

37. bar4()

38.

39. def on_release(key):

40. cyberpi.led.off()

41. pass

42.

43. with Listener(on_press=on_press, on_release=on_release) as listener:

44. listener.join()

Page 12

 Ask students to think about the questions below:

 Identify the new module that can monitor the input from your keyboard.

 What is meant by the Python keyword ‘def’?

 Why does it separate the set of expressions within each ‘def’ code block?

 How to produce interactive sound and light effects?

 Instruct students to write down their predictions and annotate the code on the

worksheet.

Page 13

Section 3 Run (3 minutes)

Step 3.1 Ask students to run the example program and check against their predictions.

 Instruct students to write down their prediction and annotate the code.

 Have students fill out the ‘What I Wonder’ column of the K-W-L chart after

running the example program. If students get some ideas about what they

would learn in this lesson, ask them to try to write down some main points.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

 What is meant by the word

‘def’?

 How to play sounds or

music through CyberPi?

Page 14

Section 4 Investigate (20 minutes)

Step 4.1 Introduce the ‘pynput’ module.

 Instruct students to identify the line of code below and figure out what is

different about this statement.

from pynput.keyboard import Key, Listener

 Say: In the example program, the ‘pynput’ module is added into the Python

code editor. The ‘pynput’ module is a third-party library that controls and

monitors input devices.

 Explain the ‘pynput’ module: In the example, we call relevant ‘pynput’ functions

to monitor keyboard input by obtaining the current status of the keyboard. The

program can monitor which key is pressed or released. ‘pynput’ can also

monitor mouse input and even control the keyboard and mouse. For example,

some functions can make the computer type a word in the text.

 Explain the syntax: In the example, the ‘from’ indicates the source of the library

that we want to import. The ‘import’ indicates the set of functions we need in

the library – the ‘Key, Listener’ means we want the functions that can monitor

the keyboard input.

 Instruct students to utilise ‘pynput’ to control the mouse. Demonstrate an

example program as follow:

 Send the file to students and ask them to run the program first.

Page 15

Example 6-1

1. import cyberpi

2. from pynput.mouse import Button, Controller

3. # Control the mouse

4.

5. mouse = Controller()

6.

7. while True:

8. if cyberpi.is_tiltleft():

9. # Tilt CyberPi left

10. mouse.move(-5, 0)

11. # Move the mouse cursor relative to current position

12. print(mouse.position)

13.

14. if cyberpi.is_tiltright():

15. # Tilt CyberPi right

16. mouse.move(5, 0)

17. print(mouse.position)

18.

19. if cyberpi.controller.is_press("a"):

20. # Press CyberPi's Button A

21. mouse.press(Button.left)

22. mouse.release(Button.left)

23. # Press and release the left mouse button

 Then ask students to add new functions that make the mouse cursor move

up and down by tilting CyberPi forward and backward.

Tips: The syntax for reference:

cyberpi.is_tiltforward; cyberpi.is_tiltback

 CyberPi is tilted forward CyberPi is tilted backward

Page 16

Example 6-2

1. if cyberpi.is_tiltforward():

2. mouse.move(0, -5)

3.

4. if cyberpi.is_tiltback():

5. mouse.move(0, 5)

 Ask students to add a new function to program the right mouse button to

be remotely controlled by CyberPi.

Example 6-3

1. if cyberpi.controller.is_press("b"):

2. mouse.press(Button.right)

3. mouse.press(Button.right)

 Summarise: The keyword ‘Key’ refers to the keyboard. The keyword ‘Button’

refers to the mouse. The keyword ’Listener’ indicates the action of monitoring

an input device while the keyword ‘Controller’ indicates the action of controlling

an input device.

Step 4.2 Explain the use of functions.

 Instruct students to identify the lines of code below in the example program:

Line 5: def bar1():

Line 10: def bar2():

Line 15: def bar3():

Line 20: def bar4():

Line 25: def on_press(key):

Line 39: def on_release(key):

 Say: The keyword ‘def’ indicates that the following lines of code are a function.

 Explain: A function is a group of related statements that performs a specific

task. A function contains a set of well-defined, organised, and reusable code.

To create a function, we need to use the keyword ‘def’ as the function header.

Page 17

To define the function, we need to use the indentation to indicate a group of

code belongs to the function. In the example program, for instance, we create

the functions ‘bar1’, ‘bar2’, ‘bar3’, and ‘bar4’ to store and represent the bars.

 Remind students that the name of a function, like the name of a variable,

should be readable and explanatory.

 Instruct students to define a function. Have them pay attention to the points

as follows:

 Start with the keyword ‘def’ and do not forget the colon;

 Indent the statement; otherwise, an error will occur.

 Explain the statement below: The word ‘key’ in the round brackets is a

parameter that indicates the input device.

def on_press(key)

def on_release(key)

Step 4.3 Explain how to play sounds.

 Instruct students to identify the lines of code below:

key.char == “1”

 Explain: This expression is to check whether Key ‘1’ is pressed or not; if Key ‘1’ is

pressed (i.e., the statement is ‘True’), execute the ‘bar1’ function.

We can modify the parameters to use other characters such as ‘a’, ‘b’, and ‘c’.

Page 18

Section 5 Modify and Make (10 minutes)

Step 5.1 Instruct students working individually to modify the example program by

completing the task below:

 Task 1: Modify the parameters in the example program. Use letters instead to

replace the numeric parameters.

Example 6-4

key.char == “a”

key.char == “b”

key.char == “c”

key.char == “d”

Note: Remind students that they should use lowercase letters.

 Task 2: Modify the ‘bar’ functions. Find some pieces of songs from music

textbooks and combine different parts of them together to make a new song.

Consider how to combine the sound effects and LED lights.

Page 19

Example 6-5

1. def bar1():

2. cyberpi.led.on("green", id=1)

3. cyberpi.audio.play_music(72, 0.4)

4. cyberpi.audio.play_music(67, 0.4)

5. cyberpi.led.on("green", id=2)

6. cyberpi.audio.play_music(64, 0.2)

7. cyberpi.audio.play_music(64, 0.1)

8. cyberpi.audio.play_music(65, 0.1)

9. cyberpi.audio.play_music(67, 0.4)

10. cyberpi.led.on("green", id=3)

11. cyberpi.audio.play_music(72, 0.1)

12. cyberpi.audio.play_music(71, 0.1)

13. cyberpi.audio.play_music(72, 0.1)

14. cyberpi.audio.play_music(74, 0.1)

15. cyberpi.audio.play_music(72, 0.1)

16. cyberpi.audio.play_music(71, 0.1)

17. cyberpi.audio.play_music(72, 0.1)

18. cyberpi.audio.play_music(74, 0.1)

19. cyberpi.led.on("green", id=4)

20. cyberpi.audio.play_music(72, 0.1)

21. cyberpi.audio.play_music(71, 0.1)

22. cyberpi.audio.play_music(72, 0.1)

23. cyberpi.audio.play_music(74, 0.1)

24. cyberpi.audio.play_music(72, 0.4)

25.

26.

27. def on_press(key):

28. if key.char == "1":

29. bar1()

Page 20

Example 6-6

1. def bar2():

2. cyberpi.led.on("orange", id=1)

3. cyberpi.audio.play_music(71, 0.1)

4. cyberpi.audio.play_music(69, 0.1)

5. cyberpi.audio.play_music(68, 0.1)

6. cyberpi.audio.play_music(69, 0.1)

7. cyberpi.led.on("orange", id=2)

8. cyberpi.audio.play_music(72, 0.2)

9. time.sleep(0.2)

10. cyberpi.audio.play_music(74, 0.1)

11. cyberpi.audio.play_music(72, 0.1)

12. cyberpi.audio.play_music(71, 0.1)

13. cyberpi.audio.play_music(72, 0.1)

14. cyberpi.led.on("orange", id=3)

15. cyberpi.audio.play_music(76, 0.2)

16. time.sleep(0.2)

17. cyberpi.audio.play_music(77, 0.1)

18. cyberpi.audio.play_music(76, 0.1)

19. cyberpi.audio.play_music(75, 0.1)

20. cyberpi.audio.play_music(76, 0.1)

21. cyberpi.led.on("orange", id=4)

22. cyberpi.audio.play_music(83, 0.1)

23. cyberpi.audio.play_music(81, 0.1)

24. cyberpi.audio.play_music(80, 0.1)

25. cyberpi.audio.play_music(81, 0.1)

26. cyberpi.audio.play_music(83, 0.1)

27. cyberpi.audio.play_music(81, 0.1)

28. cyberpi.audio.play_music(80, 0.1)

29. cyberpi.audio.play_music(81, 0.1)

30. cyberpi.led.on("orange", id=5)

31. cyberpi.audio.play_music(84, 0.2)

32.

33.

34. def on_press(key):

35. if key.char == "2":

36. bar2()

Page 21

Section 6 Recap (5 minutes)

Step 6.1 Summarise the key points learnt in this lesson:

 Summarise why and how to define functions.

 Summarise how to control and monitor the input device by using the ‘pynput’

module.

 Have students fill out the ‘What I Learnt’ column of the K-W-L chart.

What I Know What I Wonder What I Learnt

 The ‘psutil’ module

 Import cyberpi, psutil

 What is meant by the word

‘def’?

 How to play sounds or

music through CyberPi?

 The ‘pynput’ module

 Import cyberpi, pynput

 Functions

 Audio features of CyberPi

	Lesson 1~2 Python Quizzes Worksheet
	K-W-L Chart
	New Commands
	Procedures
	Features of CyberPi
	Step 1 Predict
	Step 2 Run
	Step 3 Investigate
	Step 4 Modify and Make

	Py102 Lesson 03 Worksheet.pdf
	Lesson 3 Data Protection and Passwords Worksheet
	K-W-L Chart
	Features of CyberPi
	Procedures
	Step 1 Predict
	Step 2 Run
	Step 3 Investigate
	Step 4 Modify
	Step 5 Make

	Py102 Lesson 04 Worksheet.pdf
	Lesson 4 Normal Distribution Worksheet
	K-W-L Chart
	New Commands
	Features of CyberPi
	Procedures
	Step 1 Predict
	Step 2 Run
	Step 3 Investigate
	Step 4 Modify and Make

	Py102 Lesson 05 Worksheet.pdf
	Lesson 5 Data Storage Worksheet
	K-W-L Chart
	New Commands
	Features of CyberPi
	Procedures
	Step 1 Predict
	Step 2 Run
	Step 3 Investigate
	Step 4 Modify and Make
	Note: CPU performance

	Py102 Lesson 06 Lesson Plan.pdf
	Lesson 6 Remix Culture
	Overview
	Key Focus
	Intended Learning Outcomes
	Content Standards
	Preparation
	Features of CyberPi
	Example Program
	Pre-assessment
	Procedures
	Section 1 Introduction: Remix Culture and Creativity (2 minutes)
	Section 2 Predict (5 minutes)
	Section 3 Run (3 minutes)
	Section 4 Investigate (20 minutes)
	Example 6-1
	Example 6-2
	Example 6-3

	Section 5 Modify and Make (10 minutes)
	Example 6-4
	Example 6-5
	Example 6-6

	Section 6 Recap (5 minutes)

