

Introduction
This series of activities introduces Physical Tech by building on coding skills from the Australian
Digital Technologies curriculum at Year Levels 5-10.

Start with the BBC micro:bit only to revise skills in algorithms and coding. Then, use modules from
the Boson range to build physical tech designs for real-world interactions and data gathering.

Each activity includes extension tasks and ideas for freeform projects to
allow opportunities for design thinking.

Visual Code edition
This edition presents all code in visual (blocks).

See the links below for parallel documents.
 Year levels
 5 - 6 7 - 8 9 - 10

 visual (blocks)
this document.

✓ ✓

 JavaScript

parallel document.
 ✓ ✓

 Python
parallel document.

 ✓ ✓

Physical tech from GO to WHOA! - Visual code edition 1

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0
https://docs.google.com/document/d/1PkRkuTMsA4AK2HSu44b4JvVC7k5C-FiUFAR8FhKLvbc

Contents
IMPORTANT: Prior knowledge and skills 3
Using this document 4
Curriculum alignment 5
What you need 6

MODULE 1 7
ACTIVITY 1.1 - Hello... is it me you’re looking for? 8
ACTIVITY 1.2 - Magic 8 ball 13
ACTIVITY 1.3 - Reaction time challenge 18
ACTIVITY 1.4 - Button masher 22
ACTIVITY 1.5 - Raining bricks 29
ACTIVITY 1.6 - Multiplayer dice game 36
PROJECT - A digital solution 45

MODULE 2 51
THREE QUICK TIPS for Boson 52
ACTIVITY 2.1 - Clap switch 53
ACTIVITY 2.2 - Smart scarecrow 61
ACTIVITY 2.3 - Active music display 70
ACTIVITY 2.4 - Sound effects board 79
ACTIVITY 2.5 - Swarm intruder alert system 90

MODULE 3 103
THREE WAYS to get data off the micro:bit 104
ACTIVITY 3.1 - Smart robotic fan 105
ACTIVITY 3.2 - Portable weather station 114
ACTIVITY 3.3 - Robotic plant waterer 125
ACTIVITY 3.4 - Lie detector 137
ACTIVITY 3.5 - Perfect pH advisor 153
MORE MODULES 165

APPENDIX A - TINKER SOLUTIONS 166
ACTIVITY 1.1 - 1.6 167
ACTIVITY 2.1 - 2.5 191
ACTIVITY 3.1 - 3.5 212

APPENDIX B - COURSE METHODOLOGY 229
Build → Tinker → Jump Off 230
Single sequence code 231

Physical tech from GO to WHOA! - Visual code edition 2

IMPORTANT: Prior knowledge and skills
Although no prior experience with BBC micro:bit or Boson modules is required, the activities in this
resource do not constitute an introduction to coding. These activities will revise coding skills already
introduced and practiced, then make algorithms to apply to Physical Tech solutions.

Students should have already seen these concepts and skills:

● Branching (also called Conditionals): These are if/else structures used for decision making.

● Iteration (also called Loops): These are while, for or forever structures used to repeat code.

● Variables: Used to store values (eg. name = ‘Bob’) and use later (eg. print(name)).

Recommended courses
These courses are recommended for introducing coding in a classroom setting, with the active
involvement of a teacher. Having students copy out full, completed programs is not recommended as
an effective strategy for teaching coding.

For visual (blocks) code:

● ACA Digital Technologies Challenges at Grok Learning (free for Years 3-8):

○ DT Challenge Blockly - Chatbot

○ DT Challenge Blockly - Turtle

○ DT Challenge Blockly - Space Invaders

● code.org Computer Science Fundamentals Course E and Course F (free).

For JavaScript:
● code.org Computer Science Discoveries Unit 3 (free)

● Hour of Code JavaScript app with CodeHS (free)

● JavaScript Hour of Code or complete course at CodeCraft (free)

● Khan Academy Computer Programming course (free)

● Codecademy Introduction to JavaScript (free)

For Python:
● ACA Digital Technologies Challenges at Grok Learning (free for Years 3-8):

○ DT Challenge Python - Chatbot

○ DT Challenge Python - Turtle

● Python Fundamentals by Sanjin Dedic

● Python Hour of Code or complete course at CodeCraft (free)

Physical tech from GO to WHOA! - Visual code edition 3

https://blog.aca.edu.au/so-you-want-to-get-started-with-the-aca-digital-technologies-challenges-dcdb6e79d364
https://studio.code.org/s/coursee
https://studio.code.org/s/coursef
https://studio.code.org/s/csd3
https://hourofcode.com/codehsjsapp
https://craft.buzzcoder.com/
https://www.khanacademy.org/computing/computer-programming
https://www.codecademy.com/learn/introduction-to-javascript
https://blog.aca.edu.au/so-you-want-to-get-started-with-the-aca-digital-technologies-challenges-dcdb6e79d364
https://techxellent.courses/p/hillcrest-python-11/?product_id=734781&coupon_code=DLTV
https://craft.buzzcoder.com/

Using this document
Activity structure
Each activity incorporates 3 sections:

A structured activity to build a skill, with
accompanying theory and examples.

Challenges for students to practice their skills.
Solutions in APPENDIX A.

Ideas for students to pursue their own design
projects with the skills acquired so far.

Warnings and notes

Look out for important notices or safety precautions like this.

This indicates an enquiry opportunity for students to discuss and figure out a solution.

This gives key knowledge and points to further resources.

Coding languages
This document presents code in visual (blocks) code only, from ACTIVITY 1.2 onwards.

All code has been carefully designed so that you can also choose to teach entirely in one of the other

languages with a parallel document (JavaScript or Python). A single-language approach is
recommended. Flipping back and forth from visual mode will produce less readable code.

Note, the visual code environment has some limitations, particularly in the area of functions.
Occasionally, an advanced activity will not be available as visual code.

See ACTIVITY 1.1 for advice on choosing a language.

Physical tech from GO to WHOA! - Visual code edition 4

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0
https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0
https://docs.google.com/document/d/1PkRkuTMsA4AK2HSu44b4JvVC7k5C-FiUFAR8FhKLvbc/edit?usp=sharing

Curriculum alignment
Digital Technologies (Australian Curriculum)

Processes and Production Skills
 Year levels 5-6 Year levels 7-8 Year levels 9-10

Working with
data

Acquire, store and
validate different types of
data, and use a range of
software to interpret and
visualise data to create
information (ACTDIP016)

Acquire data from a range of
sources and evaluate authenticity,
accuracy and timeliness
(ACTDIP025)

Develop techniques for acquiring,
storing and validating quantitative and
qualitative data from a range of sources,
considering privacy and security
requirements (ACTDIP036)

Analyse and visualise data using
a range of software to create
information, and use structured
data to model objects or events
(ACTDIP026)

Analyse and visualise data to create
information and address complex
problems, and model processes, entities
and their relationships using structured
data (ACTDIP037)

Defining the
problem

Define problems in terms
of data and functional
requirements drawing on
previously solved
problems (ACTDIP017)

Define and decompose real-world
problems taking into account
functional requirements and
economic, environmental, social,
technical and usability constraints
(ACTDIP027)

Define and decompose real-world
problems precisely, taking into account
functional and non-functional
requirements and including interviewing
stakeholders to identify needs
(ACTDIP038)

Designing the
solution

Design a user interface
for a digital system
(ACTDIP018)

Design the user experience of a
digital system, generating,
evaluating and communicating
alternative designs (ACTDIP028)

Design the user experience of a digital
system by evaluating alternative designs
against criteria including functionality,
accessibility, usability, and aesthetics
(ACTDIP039)

Design, modify and follow
simple algorithms
involving sequences of
steps, branching, and
iteration (repetition)
(ACTDIP019)

Design algorithms represented
diagrammatically and in English,
and trace algorithms to predict
output for a given input and to
identify errors (ACTDIP029)

Design algorithms represented
diagrammatically and in structured
English and validate algorithms and
programs through tracing and test cases
(ACTDIP040)

Implementation Implement digital
solutions as simple visual
programs involving
branching, iteration
(repetition), and user
input (ACTDIP020)

Implement and modify programs
with user interfaces involving
branching, iteration and functions
in a general-purpose
programming language
(ACTDIP030)

Implement modular programs, applying
selected algorithms and data structures
including using an object-oriented
programming language (ACTDIP041)

Evaluation and
impact

Explain how student
solutions and existing
information systems are
sustainable and meet
current and future local
community needs
(ACTDIP021)

Evaluate how student solutions
and existing information systems
meet needs, are innovative, and
take account of future risks and
sustainability (ACTDIP031)

Evaluate critically how student solutions
and existing information systems and
policies, take account of future risks and
sustainability and provide opportunities
for innovation and enterprise
(ACTDIP042)

Communication
, planning and
collaboration

Plan, create and
communicate ideas and
information, including
collaboratively online,
applying agreed ethical,
social and technical
protocols (ACTDIP022)

Plan and manage projects that
create and communicate ideas
and information collaboratively
online, taking safety and social
contexts into account
(ACTDIP032)

Create interactive solutions for sharing
ideas and information online, taking into
account safety, social contexts & legal
responsibilities (ACTDIP043)

Plan and manage projects using an
iterative and collaborative approach,
identifying risks and considering safety
and sustainability (ACTDIP044)

Physical tech from GO to WHOA! - Visual code edition 5

What you need
1 A class set (minimum 1 between 2 students) of BBC micro:bit devices.

Year 7-8 students may be familiar with this device from Primary Years. It
might be used for other strands of the Digital Technologies curriculum in
Years 7-8.

2 Battery power for the micro:bit, so that it can used away from the USB
power provided by a computer.

The BBC micro:bit Go kit comes with a battery pack for two AAA batteries
to be attached.

3 Maker materials.

For building physical tech solutions, we recommend:

● cardboard (with scissors and glue guns) and/or

● Lego or Lego-compatible parts

4 Computers or laptops with Internet access, to write code and transfer
programs onto devices.

Note: micro:bit can also be coded from a mobile device or tablet, but this
approach is not recommended at this time due to slow

5 Boson Starter Kit for micro:bit (for Modules 2 and 3).

To continue to Modules 2 and 3 of this course, this kit contains a
selection of Boson electronics modules, as well as the micro:bit
expansion board for Boson.

Boson Science Kit (for Module 3).

To continue to Module 3 of this course, this kit contains a selection of
Boson electronics modules for scientific measurement and calibration.

Physical tech from GO to WHOA! - Visual code edition 6

MODULE 1
Coding skills with the BBC micro:bit.

Physical tech from GO to WHOA! - Visual code edition 7

ACTIVITY 1.1 - Hello... is it me you’re looking for?

Goals
● Create and download your first program to the micro:bit.
● Use the scrolling display.
● Practice iteration (loops).

First program

1. For visual (block) code or JavaScript, go to makecode.microbit.org in your web

browser. For Python, go to python.microbit.org.

Which language should you choose? See the note Coding languages under Using
this document.

Remember:

● Year Levels 5 - 6 are only required to do visual (blocks) code.

● JavaScript is a commonplace language on the Internet. Its syntax is
similar to popular industry languages such as Java, C++, C#, as well as
Arduino C. It qualifies as a General Purpose Language for Year 7-10 and
beyond.

● Python’s readability and conciseness makes it an increasingly-popular
language for learning coding. It is used in industry for quick prototyping and
data analysis. It qualifies as a General Purpose Language for Year 7-10 and
beyond.

2. Our first program will say hello to you. Replace Name with your own name.

Visual (blocks)

 JavaScript

Python

Physical tech from GO to WHOA! - Visual code edition 8

https://makecode.microbit.org/
https://python.microbit.org/

3. Connect the micro:bit via USB. It should appear to the computer like a USB disk / USB stick.

4. Click the Download button to get your .hex program file. Save or copy this file to the micro:bit,
as if you were saving or copying to a USB stick.

To show that the file is being sent to the micro:bit, an orange LED will blink quickly on the
back.

Most web browsers will automatically save files in a Downloads folder on your
computer. To save time in the long run, you can instruct your browser to ask for a
location each time you download a file.

● In Chrome, access Settings from the menu, scroll down and click
Advanced, then activate “Ask where to save each file before downloading”.

● In Edge, access Settings from the menu, click “View advanced settings”,
then activate “Ask me what to do with each download”.

● In Firefox, access Options from the menu, the choose “Always ask you
where to save files”.

● In Safari, access Safari menu → Preferences, then under File Download
Location (in the General tab), choose “Ask me where to save files”.

Say it again
1. Repeat the scrolling text forever using a simple while loop (iteration).

Visual (blocks)

JavaScript

Python

2. Each time you modify your program, you must Download the new .hex program file and save
it to the micro:bit.

Physical tech from GO to WHOA! - Visual code edition 9

We avoided using the forever block for our loop.

This resource avoids event trigger blocks, where possible.
See APPENDIX C for more information.

Looping with the micro:bit
Try these extension tasks to practice iteration (see Solutions for complete programs):

A. Make a 4 second pause between each “Hello”.

Here’s the micro:bit command to pause for 1 second (1000 milliseconds):

 Visual

 JavaScript

 Python

B. Instead of looping forever, limit the loop to exactly 5 times.

Here’s the structure for looping 3 times:

or

Visual

JavaScript

 Python

C. Now change the loop to happen 8 times.

Physical tech from GO to WHOA! - Visual code edition 10

D. Have the program show the index as it loops: “Hello 0”, “Hello 1”, “Hello 2”, etc.

Here’s the command to join two different variable types for display:

Visual

 JavaScript

 Python

Fun with loops
Now that you can use the display and make code repeat, what other things could you make the
micro:bit do? Here’s some ideas to get started:

● Doomsday tag - The micro:bit is a badge that counts down to 0, then displays a picture on
the screen. Could you find a way to make it speed up as it approaches 0?

● Pixel animation - Use your loop index to move a pixel across or down the micro:bit display.
How could you plot out a complete square?

Here’s the code for plotting and removing a pixel at position (2,2) on the display:

Physical tech from GO to WHOA! - Visual code edition 11

● Big picture display - Use your loop index to scroll a big picture across the micro:bit screen.
Could you make it scroll back and forth?

Here’s the code for showing a cityscape picture with an offset position:

Physical tech from GO to WHOA! - Visual code edition 12

ACTIVITY 1.2 - Magic 8 ball

Goals
● Make a Magic 8 ball to give random answers to your spoken

questions, such as “Will I ever become Prime Minister?”
● Practice branching (decisions).
● Practice assigning and using variables, including arrays (lists).
● Practice generating random numbers.

JavaScript
parallel document

Python
parallel document

Choices, choices
1. Here’s our basic plan for the Magic 8 Ball program (Use the reset button on the back of the

micro:bit to run again.):

Scroll “Ask your question then press button A.”

Wait for Button A to be pressed

Choose a random answer

Scroll the answer

2. To wait for button A to be pressed, we’ll use an empty loop. It will keep doing nothing as long
as button A is not pressed.

Visual

Physical tech from GO to WHOA! - Visual code edition 13

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/#heading=h.2hr7istdb4f

3. To give a random answer, we’ll need to get a random number, like rolling a die. Store that
number in a variable, then use it to choose different answers.

Physical tech from GO to WHOA! - Visual code edition 14

More answers
4. Our if and else blocks will become very large if we try to add lots more answers. A better way

is to make a list (array) of all the answers before we start.

Physical tech from GO to WHOA! - Visual code edition 15

5. Now we can use our random number to access an answer from the list.

Why did we need to pick a random number between 0 and 7 (inclusive)?

● Our list contains 8 answers, with “It is certain” at position 0.

● This means the last answer “Very doubtful” is at position 7.

Playing with the Magic 8 Ball
A. Change just the last line of the program so that the answer is always “Don’t count on it.”

B. Add some more answers of your own. Remember to increase the limit of the random number.

C. Put in a loop so that the program starts again, without you having to press reset.

D. Modify the program to have a cheat. Pressing button B always gives “It is certain”.

Physical tech from GO to WHOA! - Visual code edition 16

The sky’s the limit
With the power of variables and random numbers, you can make the micro:bit do all sorts of
unexpected things:

● Magic 8 Ball enhancements:

○ Moody Magic 8 Ball - Refine your Magic 8 Ball to start by showing a happy, sad or
meh face. If happy, the Magic 8 Ball will be optimistic with its answers. If sad, it will be
pessimistic. If meh, it may give any kind of answer.

○ Warm up Magic 8 Ball - If the temperature is below a certain threshold the Magic 8
Ball tells the user, “I am too cold to give predictions. Warm me up first!” If there is no
fridge or ice pack available then the Magic 8 Ball can be too hot.

Here’s the code for checking temperature:

○ Things are about to go south - Experiment with the compass heading block and
create a very pessimistic message when the micro:bit is facing due South. This
message should override all other random answers.

● Greedy pig - Program the micro:bit to play the game “Greedy pig”. A random number is
chosen between 0 and 9. Rolling a 2 means game over, but any other number gets added to
the player’s score. Press A to roll again, or B to take your money and run. You could make the
game harder by adding more “deadly” numbers as the game goes on.

● Dice simulation - Use the micro:bit to help you run a dice-rolling simulation with a pair of
six-sided dice. After 100 rolls, what was the most common total to get?

Hint: Store the total of each roll as a number in an array. The array will have 100
numbers in it.

Physical tech from GO to WHOA! - Visual code edition 17

ACTIVITY 1.3 - Reaction time challenge

Goals
● Make a challenge to test your reaction time - how soon can you

push the button?
● Record elapsed time with a variable.

JavaScript
parallel document

Python
parallel document

Random starting gun
1. Here’s the complete program in Structured English (Pseudocode).

Scroll “Get ready...”

Wait for unpredictable time

Show a symbol to start the challenge

reactionTime ← 0

REPEAT until button B is pressed

Increase reactionTime

END REPEAT

Scroll “Your time: ”, reactionTime

2. We need a random pause time between 2 and 4 seconds before the challenge begins.

 Visual

Physical tech from GO to WHOA! - Visual code edition 18

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/#heading=h.92qfl0aampd

3. We’ll need something to indicate the challenge has started. Light up the middle display pixel.

Why not use an icon?

The show icon command block causes a 600ms time delay.
Normally that’s not a problem, but it will not do for
time-sensitive challenges like this.

Keeping track of time
4. The challenge goes on until Button B is pressed. That sounds like a loop!

Physical tech from GO to WHOA! - Visual code edition 19

Reset button

Use the reset button on the back of the micro:bit to re-run your code
without downloading it again.

5. Now comes the important part. We will count the reaction time in hundredths of a second,
which means we need a variable to increase every 10 milliseconds.

Why measure in hundredths of a second?

Our program increases reactionTime in increments of 10 ms, rather than every 1 ms.
This is due to limits with microprocessor hardware.

Physical tech from GO to WHOA! - Visual code edition 20

Refinements
A. Between 2 and 4 seconds is too long to wait at the start. Change it to between 1 and 3

seconds.

B. Change the program so that it shows a smiley face every time the user achieves a time lower
than half a second, a meh face if lower than a second, and a sad face otherwise.

C. Put in a loop so that the program starts again, without you having to press reset.

D. Now limit the game to exactly 3 rounds, then say “Game over”.

E. For fun, have the pixel light up in a different random position each time you play.

Buttons for interactivity
A surprising number of games and tools can be made for just one or two buttons. Here’s some ideas
to get started on your own project:

● Improved challenge - Improve the Reaction Time Challenge by storing the score for each
round, then providing the player with an average score when all the rounds are over. You
might even make it a “hotseat” challenge for 2 players.

● Unlock a secret - To unlock a secret message, you must enter the right sequence using
buttons A and B. eg. ABAAB. There are always 5 buttons to press. If you get it wrong, you
have to start again.

Do you think this is a very secure way to store a secret?

● How many possible combinations exist?

● “The claw!” - Can you stop the claw in the right place to grab the toy?
A toy is represented by a pixel somewhere on the bottom row of the display. A claw at the top
of the display moves left and right. Press a button to stop the claw in the right place, then
watch it drop to grab the toy.

Physical tech from GO to WHOA! - Visual code edition 21

ACTIVITY 1.4 - Button masher

Goals
● Make a button masher game - how many times can you push

the button during a limited time?
● Practice Maths operations.

JavaScript
parallel document

Python
parallel document

5 second timer
1. First, we need code to start the game, then end after 5 seconds. (Use the reset button on the

back of the micro:bit to run again.)

 Visual

2. Wait, we have a problem! Using pause means that nothing can happen during the 5 seconds.

How can we get the micro:bit to set a timer for 5 seconds, but allow other
things to happen in-between?

● We could use separate event blocks like the
one at right, but we avoid using these in this
course (see APPENDIX C).

● Game blocks are available, but these are
special shortcuts unique to micro:bit.
Also, they are not available in Python.

Physical tech from GO to WHOA! - Visual code edition 22

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/#heading=h.heewdies1dfq

Our solution: Make a variable for the finishing time. Set it to 5 seconds more than the current
system running time.

3. Now a loop just needs to keep checking that the current time is still below finishingTime.
This solution means we can do other things inside the loop.

Physical tech from GO to WHOA! - Visual code edition 23

Counting presses
4. Here’s our plan for the full program in Structured English (Pseudocode):

Scroll “Ready…Set…”

Show tick symbol

finishingTime ← 5 seconds from now

REPEAT while now is not yet finishingTime

IF button B is pressed

Add 1 to numberOfPresses

END IF

END REPEAT

Show cross symbol

Scroll “Your score: ”, numberOfPresses

5. To hold the number of presses we’ll need a variable. We’ll set it to 0 at the start.

Physical tech from GO to WHOA! - Visual code edition 24

6. Increase numberOfPresses when button B is pressed during the 5 second loop. Finally,
display it at the end.

7. Did you test the program so far? You should have noticed a bug.

What is the bug, and what is causing it?

● The recorded number of presses is way too high, and it’s not even consistent!

● The problem is with the if block:

○ It only checks if button B is currently being pushed down, but it
doesn’t wait for the button to be released.

○ The loop gets repeated thousands times during the 5 seconds, and
numberOfPresses increases whenever it sees that button B is down.

Physical tech from GO to WHOA! - Visual code edition 25

8. We’re going to have to wait until the button is released before allowing the loop to repeat.
Add an empty extra loop inside the if block to do this waiting. All done!

Physical tech from GO to WHOA! - Visual code edition 26

Alternate designs
Important: Go back to the original completed game code before each of these tasks.

A. Change the game to count touches on one of the micro:bit’s pins, instead of the button.

Here’s the micro:bit input check for Pin 0.

Note:
● You have to be touching the GND pin too.
● This works best if the micro:bit is running on battery power, not USB.

B. Make it a random time limit. Don’t forget to tell the player the time limit before the game starts.

We discovered how to pick random numbers in ACTIVITY 1.2. Here’s the code to
store a random number between 0 and 10:

C. Give the player a target to win the game. eg. 15 presses in 5 seconds.

D. Run the original game three times. When finished all three games, display the average score.

Hint: You’ll need a loop around the whole program, and a way to remember the
score for each game.

Physical tech from GO to WHOA! - Visual code edition 27

Maths means games
Most video games incorporate Maths, eg. character stats, points scored. Now that you can have a
counter increasing, what else could you make?

● Whack a mole - When the left side of the screen lights up, quickly press button A. When it’s
the right, press button B. How many moles can you whack before the time runs out?

● Maths quiz - The micro:bit displays a Maths question with a single-digit answer. To select the
answer, use button A to cycle through the numbers 0 to 9 on the screen, then button B to
select one. Did the player get it right? How about a time limit to give an answer?

This code immediately displays the number 2 on the screen (no scrolling):

● RPG fighter - Your enemy attacks with a random damage value. Will you attack or block with
your turn?

Physical tech from GO to WHOA! - Visual code edition 28

ACTIVITY 1.5 - Raining bricks

Goals
● Make a game where the player collects or avoids falling bricks.
● Generate and animate a falling brick from random positions.
● Detect a collision between the player and the brick.
● Use simple functions to help organise the program.

JavaScript
parallel document

Python
parallel document

The brick’s behaviour
1. The brick will be represented by one lit pixel. It will start from a random x-position (0 to 4) at

the top of the display, then move down one pixel down every 200 ms.

The 25 LEDs have coordinates as in
the diagram.

We’ll use two variables brickX and brickY to keep track of the brick’s position on the screen.

brickY ← 0 Start at top of display.
brickX ← random number from 0 to 4

REPEAT forever

Wait for 200 ms A short pause every time we loop.
Unplot pixel at (brickX, brickY)

Before moving the brick, turn off the
LED at its previous position.

Add 1 to brickY Move down 1 pixel.
IF brickY > 4 If brick has gone past the bottom...

brickY ← 0 ...go back to the top,
brickX ← random number from 0 to 4 and find a new position to start.

END IF

Plot pixel at (brickX, brickY) Turn on the LED at the new position.
END REPEAT

Physical tech from GO to WHOA! - Visual code edition 29

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit?pli=1#heading=h.n98x2r8wy6ih

2. First, let’s set up the starting commands and the main loop. This program will get very big, so
we’ll create a simple function moveBrick to separate off all the code for moving the brick.

Here’s the code for the function moveBrick:

Physical tech from GO to WHOA! - Visual code edition 30

The player’s behaviour
3. Now let’s plan the program for the player.

The player is always in the bottom
row, but button A and button B will
move them left and right.

We’ll use one variable playerX to keep track of the player’s position in the bottom row.

playerX ← 2 Start in the middle at the bottom.
REPEAT forever (The same loop from the brick code.)

Wait for 200 ms (The same wait from the brick code.)

Unplot pixel at (playerX, 4)

Before moving the player, turn off the
LED at their previous position.

IF button A is pressed

Minus 1 from playerX

IF playerX < 0 If they’ve moved off the left side...
playerX ← 0 ...return to left side.

END IF
END IF

IF button B is pressed

Add 1 to playerX

IF playerX > 4 If they’ve moved off the right side...
playerX ← 4 ...return to right side.

END IF
END IF

Plot pixel at (playerX, 4) Turn on the LED at the new position.
END REPEAT

Physical tech from GO to WHOA! - Visual code edition 31

4. Here’s what to add to the main routine:

(Code for function movePlayer is on next page...)

Physical tech from GO to WHOA! - Visual code edition 32

Here’s the code for function movePlayer:

Physical tech from GO to WHOA! - Visual code edition 33

5. Here’s the complete program so far.

Physical tech from GO to WHOA! - Visual code edition 34

Making the game playable
A. Detect a collision. A collision is when the player and the brick are in exactly the same position.

When this happens, blink the overlapping LED two times, then resume the game.

B. Create a variable to count collisions. End the game at exactly 3 collisions.

C. Create a score variable and increase it by 1 every time the player successfully dodges the
brick. Print the score when the game is over.

D. When the game is over, congratulate the player if the score is greater than 20.

Animated games
Despite its small display, the micro:bit can be coded for many types of animated games.

● More improvements to Raining Bricks:

○ Wet Wet Wet - Introduce a second brick, which is generated when the first brick gets
halfway down the screen.

○ Tilt control - Use the accelerometer reading to control the position of the player.
Tilting the micro:bit left and right moves the player.

○ Collect the bricks - Change the rules so that the player now collects bricks, and the
score goes up by 1 when a brick is collected. The game is over when 10 bricks have
been missed (not collected). Select the original or new game from a menu by pressing
button A or B.

● Ski between the flags - Pairs of pixels scroll up the screen, and the player pixel must pass
between them.

● Flappy pixel - Press a button to keep the pixel in the air as it moves sideways and dodges
mountains.

Physical tech from GO to WHOA! - Visual code edition 35

ACTIVITY 1.6 - Multiplayer dice game

Goals
● Make a simple dice game between two micro:bits.
● Work in pairs to use the micro:bit’s radio functionality.

JavaScript
parallel document

Python
parallel document

Sending and receiving

Chrome and radio

At time of testing (January 2019),
Chrome browser may slow down or
hang when using radio commands
along with loops in the online editor.

If this occurs, try to return to the
micro:bit home page (top left), then
restart the browser.

The problem may be avoided by hiding
the micro:bit emulator before starting to
code. This is done by pressing the button at the bottom left of the page.

Firefox and Edge browsers tested on Windows 10 did not have the same issue.

1. To test the radio, each pair of micro:bits should use a different group number. We’ll use 5 in
this example.

Physical tech from GO to WHOA! - Visual code edition 36

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.cnmum27mv460
https://makecode.microbit.org/

2. Code micro:bit A to send message whenever a button is pressed. Make the message unique.

Now code micro:bit B to display any message it receives. Try it out!

Using an event block

We have avoided using event blocks until now (see APPENDIX C).

Unfortunately, it is unavoidable for radio, since there is no standard command to
check for new radio messages.

Physical tech from GO to WHOA! - Visual code edition 37

3. Let’s make micro:bit B flash LEDs while it’s waiting for a message to come in.

Something went wrong! No messages?

Micro:bit B is not receiving any messages. Why?

The event trigger on radio received will not happen unless there is some idle time in
the main routine.

In other words, micro:bit B is too busy flashing to check for new messages. There
must always be some kind of pause in the loop.

Physical tech from GO to WHOA! - Visual code edition 38

4. Let’s add a pause and see if that helps.

It still looks bad! How come?

Radio messages are getting through now, but the main loop is going back to toggling
those LEDs at the same time the message is being scrolled.

We’re going to have to smart when using event triggers.

Physical tech from GO to WHOA! - Visual code edition 39

Rolling the dice
5. Here’s our plan for the full program. The same program can go on both micro:bits.

6. Let’s start with the player’s roll. 0 is a good starting value for myRoll, since we can’t roll a 0.

Physical tech from GO to WHOA! - Visual code edition 40

7. We’ll wait for the button press until myRoll is not 0.

Physical tech from GO to WHOA! - Visual code edition 41

Opponent’s roll
8. Now to receive the opponent’s roll.

The show icon is very important - it provides a pause so that incoming messages can be
checked.

Physical tech from GO to WHOA! - Visual code edition 42

9. Finally, decide the winner.

Physical tech from GO to WHOA! - Visual code edition 43

Enhancing the game
A. Instead of showing your roll as a number, use the pixels to show dots just like a real die.

B. Write a loop so that the game starts again after the winner is shown.

C. Keep a score and make a “best out of 3” challenge.

D. Animate a ticking clock while waiting for the opponent.

Radio star
The simple radio functionality makes the micro:bit very powerful.

● More two-player games:

○ Rock Paper Scissors - Very similar to the dice game, but with simple logic: paper
beats rock, scissors beat paper, rock beats scissors.

○ Battleship - This is more complicated. Start simple with one ship each, always in the
same place. Then, add the more complex parts.

● Swarm effects - Combine radio commands with random numbers to make interesting
animations with a class set of micro:bits, or conduct a simulation of a virus spreading.

● Radio log - If you’re recording data in a remote place (like temperature in the fridge), use
radio messages to send the data to a second micro:bit in your hand.

● Radio jammer - It’s possible to create a program that cycles through all the radio groups and
spams them with messages. Can you find a way for two micro:bits to still communicate if there
is a jammer in the area?

● Sing in harmony - If you have audio outputs for your micro:bits, use radio to start them all
singing different parts to a simple song. You can even generate harmonies if the melody
micro:bit sends the major notes.

Physical tech from GO to WHOA! - Visual code edition 44

PROJECT - A digital solution

Steps
● Investigate and define a problem or need to address with a digital solution.
● Design the solution, including user interface and main algorithm.
● Code, build and test the solution, or a solution prototype.
● Evaluate the success of the solution or prototype, and examine possible impacts.

Investigate and define
We start by finding a problem or need we want to address through a physical tech solution.

PROMPTS FOR BRAINSTORMING / IDEATION

What bothers you or could be improved...

● in your classroom,
● in your hallways, lockers, common spaces,
● in your playground,
● in your house,
● in your local community?

Can you identify a need for...

● order and efficiency,
● safety,
● tuning into a social or environmental issue,
● fun and entertainment,
● something totally crazy?

Can you think of an existing solution that is...

● too slow,
● too big or too small,
● not connected enough?

 EXAMPLE

After brainstorming, Abby, Ben and Kim
identify a problem.

Their locker hallway is crowded because
some students loiter too long when getting
their things from their lockers.

Project Planning
Your team may formalise the planning of their project by:

● assigning roles to team members,
● fixing a “budget”,
● scheduling key dates such as meetings with the teacher or client,
● creating and maintaining a Gantt chart for the project.

Physical tech from GO to WHOA! - Visual code edition 45

DATA WORK

How can you get data to help you understand the
problem?

● survey (paper or online)
● observation
● existing records
● Internet research

How will you...

● validate the data to know that it is useful
and not full of errors,

● store the data securely,
● analyse the data to learn what it has to

say,
● visualise and present the data /

information learned.

 EXAMPLE

The team prepares an online survey for
students using the locker hallway.

Kim suggests using a spreadsheet for the
data they get back. They remove any
personal identity data, filter out error values
and password-protect the spreadsheet file.

Next, they use some formulas to help prepare
charts for presenting.

40% of surveyed students take more than 1
minute at their lockers. This may be the cause
of the locker crowding.

SOLUTION REQUIREMENTS

What are the functional requirements?

● Break down the problem.
● Be specific - what must your solution

primarily achieve?

What are the non-functional requirements?

● user friendliness,
● speed,
● accessibility?

Answer a few more questions:

● Which group of people will use your
solution?

● What constraints are there (time,
equipment, money, existing systems)?

● How will you judge if the solution works?

 EXAMPLE

The team decides on 3 functional
requirements:

1. The solution will be a timer that can be
started by anyone next to a locker.

2. The solution will have a clear visual
countdown to indicate time remaining.

3. The solution will alert students when 1
minute elapses.

Physical tech from GO to WHOA! - Visual code edition 46

Design
Design work happens before jumping right into coding and building.

USER INTERFACE (UI)

The user can interact with the solution via...

● buttons,
● pins,
● light sensor,
● temperature sensor,
● compass,
● accelerometer (movement, shaking),
● radio message from another micro:bit.

The user can be presented with output via...

● pixels,
● icons,
● scrolling text,
● radio message to another micro:bit,
● sound/music (with appropriate

connection).

Draw two possible design mockups with labels
(annotated).

Choose one design to proceed with.

 EXAMPLE

Abby prepares the detailed mock-up for the
team’s chosen UI design.

The design allows either of the two buttons to
start the timer. A button is pressed by the
person at the locker, or by a person waiting.

A cardboard frame holds the micro:bit onto
the wall near the locker, and shows how to
use the timer.

Pixels on the display will show the countdown.
A flashing icon will indicate that time is up.

Physical tech from GO to WHOA! - Visual code edition 47

MAIN ALGORITHM

Figure out your solution’s main algorithm - the
part that is most important for the functional
requirements.

● Create a flowchart and/or structured
English (Pseudocode). Try to do this
without jumping right into the real coding
environment.

● Trace through your algorithm by keeping
track of variable values. This can be
formalised with a trace table.

● If your algorithm expects input data,
experiment with different test cases.

Here’s a list of code techniques and structures
we’ve covered in MODULE 1:

● iteration (loops)
● branching (if / then)
● variables and arrays
● random numbers
● Maths operations
● functions (Python and JavaScript only)

 EXAMPLE

The team prepares a flowchart. When they
realise the display has 25 pixels, they decide
to make the timer 50 seconds instead of 60.

Physical tech from GO to WHOA! - Visual code edition 48

Code, build and test
Now is the time to code and test the program, as well as building any physical parts.

MODIFICATIONS

You may find that you must modify your design as
you discover new constraints or opportunities
while coding.

Just remember:

● Stick to the functional requirements.
● If you find you must alter the requirements,

make note of any major changes to the
design.

 EXAMPLE

Ben realises that the code may need to be a
little different from his team’s flowchart, to
keep track of the pixels while counting down.

TESTING

Try to record any informal testing you do as you
develop your code.

Once the code is ready to be formally tested,
prepare a testing table with inputs, expected
output and actual output.

Include in your tests:

● unexpected user input (eg. a user presses
a button at the wrong time, or for too long),

● input data values (if applicable)
○ expected values,
○ values that are out of expected

range,
○ boundary values (on the boundary

between in and out of range).

 EXAMPLE

Input Expected
output

Actual output

Press
button A

Restart
timer

✓ but only when icon is
flashing

Press
button B

Restart
timer

✗ Does nothing.

● Currently, only button A resets the
timer. Button B can be added easily in
code.

● The timer cannot be restarted until it
runs out. This could limit its usefulness
in a busy locker bay. This bug is a little
trickier to fix in code.

Physical tech from GO to WHOA! - Visual code edition 49

Evaluate
This is the final stage. How did the solution do, and what are potential impacts to consider?

HOW DID WE GO?

Some useful questions to ask:

● Did the solution meet the functional
requirements set out in the design stage?

● Was there any “creep”? Did we end up
with something rather different to the
design, even if it was good?

● Are there unresolved or unexpected
problems with the solution?

● What data could be gathered to determine
how well the solution works?

 EXAMPLE

The team decides that the functional
requirements have been met, but there are
some unexpected problems:

● The micro:bit runs down its batteries
while timing and while waiting to time.

● There is a risk of theft or damage of
the device in the locker bay.

● It would be nice to have a sound as
well as a visual alert, but that would
require separate hardware.

IMPACT!

Lastly, consider the impacts of your solution:

● social (locally or wider society),
● environmental (this area is often ignored

when dealing with high tech solutions),
● economic (jobs and livelihoods).

How does your solution compare with existing
solutions?

Is it innovative, and how is that defined?

 EXAMPLE

Kim suggests that, if some of the limitations of
the solution could be resolved, the locker
timer could have a positive social impact in
the school.
However, Abby reflects that the environmental
impact is high - one micro:bit per locker, with
batteries.

Physical tech from GO to WHOA! - Visual code edition 50

MODULE 2
Real-world projects with BBC micro:bit and BOSON Starter Kit.

Physical tech from GO to WHOA! - Visual code edition 51

 THREE QUICK TIPS for Boson

1 Never pull leads by the cord.
Always grip the plug.

2 Boson modules work best when USB power
is supplied to the VIN port on the
Boson Expansion Board.

USB power could come from a computer, an
AC adaptor or a battery source.

(The micro:bit must still be programmed
via its own USB port.)

3 Use Alkaline batteries.

Avoid Carbon Zinc batteries, which are
usually slightly cheaper and may be marked
as “Super Heavy Duty”.

(Battery power can produce different results
to USB power.)

Physical tech from GO to WHOA! - Visual code edition 52

ACTIVITY 2.1 - Clap switch

Goals
● Create a hand clap-activated light and a fan for a home model.
● Test the Boson Sound Sensor and LED module.
● Test the Boson Rotation Sensor and Fan module.
● Use a Boolean variable.

JavaScript
parallel document

Python
parallel document

Design overview

We will build a model for a home with:

● a light that can be switched on or off by clapping hands,

● a fan controlled by a knob (rotation sensor).

Physical tech from GO to WHOA! - Visual code edition 53

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit?pli=1#heading=h.52qcfxuqyjd1

Testing the Sound Sensor
1. We need to find out the kind of

values we will get from the Sound
Sensor.

Attach it to P0 on the Boson
Expansion Board.

2. Make a loop to keep getting the Sound Sensor reading on P0 and scroll it on screen.
(Scrolling takes time, so short sounds may not register if poorly timed.)

Visual

Analog input
The Sound Sensor makes a voltage level that
varies from 0V up to a maximum, not just on/off.

The micro:bit can read a number from 0 to 1023,
but the real maximum value depends on the sensor and the power source.

3. Note down the typical number you get without clapping (eg. 250), and with clapping (eg. 420).

The Boson Sound Sensor picks up noise in the environment,
similar to a microphone.

In a noisy classroom, try to find the number value to distinguish
background noise from a clap.

Physical tech from GO to WHOA! - Visual code edition 54

Detecting a clap
4. Write a loop to detect a clap. If the reading is higher than the number you determined, show a

heart, otherwise clear the screen.

Boson power
The most reliable solution is to power everything via the VIN USB
socket on the Boson Expansion Board. See THREE QUICK TIPS.

Results may vary if the micro:bit’s power is used.

5. Now attach the
Red LED
module on P8.

Physical tech from GO to WHOA! - Visual code edition 55

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.uq8xqnarahz

6. Turn the light on when a clap is detected.

Physical tech from GO to WHOA! - Visual code edition 56

7. We want to toggle the light with a clap. Make a variable lightOn to remember whether the
light is on or off, and a function toggleLight to flip it on or off.

Physical tech from GO to WHOA! - Visual code edition 57

Controlling the fan
8. Connect the

Rotation
Sensor to P1.

Connect the
Mini Fan
Module to
P12.

The Boson Rotation Sensor gives an analog voltage, like the
sound sensor. But more reliable!

Turn it clockwise to increase the voltage.

The micro:bit should get a reading from 0 to 1023. How could you
confirm the numbers?

9. Inside the loop, use the reading from the sensor as the power value for the fan.

Driving the fan
A small voltage from the micro:bit is just enough to drive the Boson
Fan motor.

If running on batteries, you may need to give the fan a little tap to get
momentum going.

Physical tech from GO to WHOA! - Visual code edition 58

Make the house!
10. Use materials of your choice to build a house with the sensors and modules installed inside.

Here’s a LEGO construction for this model:

Boson modules come with 2 magnetic backpieces to use when building:

LEGO-compatible backpieces for
attaching to LEGO bricks.

Screw-hole backpieces contain
holes for securing with a screw and
nut.

Physical tech from GO to WHOA! - Visual code edition 59

Tweaking the system
A. Try swapping the fan module and the LED module. When done, swap them back again.

B. When no clap is happening, use the micro:bit’s 25 pixels to display a chart of the current
sound level.

C. Remove the rotation sensor and replace it with the push button for activating and deactivating
the fan. You’ll need to edit the code so that one push means on and another push means off.

The Boson Push Button is a digital sensor (pressed or not
pressed). Use the digital read command and check for 1 or 0.

HINT: Once you detect a press, you’ll need to wait for a release.

D. Add the rotation sensor to P2. Edit your program so that the rotation sensor is used to adjust
the sensitivity for detecting claps.

Home automation
Modern home automation is little more than combining inputs and outputs to a system.

● More improvements to our house:

○ Remote controlled - Use the radio function from a second micro:bit to control the light
or fan in the house.

○ Double-clap - A single clap toggles the light, but a double-clap toggles the fan. This is
trickier to code than it sounds. (HINT: First count the claps, then take action after).

○ Night light - Use the micro:bit’s light sensing to switch the house light on after dark,
and turn it off in the presence of bright light.

● Eco-aware apartment - Use a timer on the micro:bit to turn all appliances off when no one is
detected in the room for 60 seconds. Connect the Boson Motion Sensor to make this work.

● Earthquake detector - Combine the inputs from the sound sensor with the micro:bit’s
accelerometer to detect vibrations. Use the rotation sensor for calibration.

Physical tech from GO to WHOA! - Visual code edition 60

ACTIVITY 2.2 - Smart scarecrow

Goals
● Create a mechanical scarecrow that flaps its arms

when movement is detected.
● Test the Boson Motion Sensor.
● Test the Mini Servo.

JavaScript
parallel document

Python
parallel document

Design overview

We will build a model for our scarecrow with:

● a motion
sensor to
determine if
a bird is
present,

● moving
arms that
seesaw to
scare away
the bird.

Physical tech from GO to WHOA! - Visual code edition 61

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.5rq72ngpw0ya

Investigating the Motion Sensor
1. We need to find out how sensitive

the Motion Sensor is.

Attach it to P0 on the Boson
Expansion Board.

2. Make a loop to show an icon when the sensor fires. Test how sensitive it is. How far away
before it doesn’t detect motion?

The Boson Motion Sensor is a Passive Infrared (PIR) sensor.

It detects movement by measuring a change in infrared light, such
as from body heat.

The Motion Sensor can be ON (full voltage), or OFF (no voltage).
It gives a digital value (1 or 0).

Physical tech from GO to WHOA! - Visual code edition 62

3. Write a function to screen out isolated readings (less than 2.5 seconds long). These readings
may be erroneous.

Physical tech from GO to WHOA! - Visual code edition 63

Testing the Mini Servo
4. Attach the Mini Servo to P8

on the Boson Expansion
Board.

The servo motor is different from a regular motor.

Instead of setting a speed, you set an angle (from
0° to 180°). The axle rotates once to that position.

The servo motor expects a repeating voltage pulse
to set its position (Pulse Width Modulation).

This special command activates a pulse on P8.
It drives the servo to the 90° position:

Physical tech from GO to WHOA! - Visual code edition 64

5. Write a program to test swinging the axle back and forth from 0° to 120°.

Boson power
The most reliable solution is to power everything via the VIN USB
socket on the Boson Expansion Board. See THREE QUICK TIPS.

Results may vary if the micro:bit’s power is used.

If I only had a brain
6. It’s time to bring the parts together. Attach both modules as below:

Physical tech from GO to WHOA! - Visual code edition 65

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.uq8xqnarahz

7. Combine the previous code to swing the arms as long as a confirmed motion is ongoing.

Physical tech from GO to WHOA! - Visual code edition 66

8. Collecting data is one way to see if the scarecrow is effective.

In the main routine, add a counter for the number of times the scarecrow waves its arms.

Physical tech from GO to WHOA! - Visual code edition 67

Make the scarecrow
11. Use materials of your choice to build the scarecrow with modules attached.

Here’s a cardboard construction for this model.

Physical tech from GO to WHOA! - Visual code edition 68

Brainier
A. The arm waving is too slow and predictable. Can you make it more random?

B. Some scarecrows are designed with laser lights. Add the Boson LED Light to your
scarecrow’s head, and have it flash when the arms are waving.

C. A farmer wants the scarecrow to deactivate at night so that owls will stay. The micro:bit has a
sensor on-board that is perfect for this.

D. Modify the code so that the counter increases only once for each new confirmation of motion.

Serving up movement
Servo motors make projects more exciting!

● More improvements to our scarecrow:

○ Alarm bells - Some research suggests that sounds can also be effective in scaring off
birds. Use music commands to play tunes or tones when the scarecrow is moving.

Audio on P0
The Boson Expansion Board has an audio port
for headphones or speakers, but it always
uses P0.
You will need to move other sensors to P1
or P2.

○ Crowd scaring - Other research suggests synchronised movement can help scare off
birds. Use radio commands to fire off multiple micro:bit scarecrows at once.

● Oscillating fan - Use the Mini Servo to create a rotating platform for the Boson Mini Fan to sit
upon. Can you figure out how to make it turn slowly?

● Sunrise-to-sunset clock - Create a fanciful circle artwork that slowly rotates 180° from
sunrise to sunset over the course of the day. Could you enhance it with a button for resetting
at dawn? Or even use the micro:bit’s light or temperature sensing?

Physical tech from GO to WHOA! - Visual code edition 69

ACTIVITY 2.3 - Active music display

Goals
● Create a bright vertical volume display.
● Test the RGB LED strip.
● Work with a Neopixel library.
● Use Maths to adjust values from the Boson Sound Sensor.

JavaScript
parallel document

Python
parallel document

Design overview

We will build a model DJ desk with:

● a sound sensor to read
music volume,

● an RGB LED strip to
display the sound
actively.

Physical tech from GO to WHOA! - Visual code edition 70

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.b08p8pttlyg6

Exploring the LEDs
1. Connect the LED RGB Strip to P8 on the

Boson Expansion Board.

2. In the online editor, click

Extensions, then choose
neopixel.

The RGB LED Strip uses the NeoPixel control protocol so that many lights can be
controlled with just one lead.

3. Our strip has 7 LEDs. Set up the neopixel control on P8.

Physical tech from GO to WHOA! - Visual code edition 71

https://makecode.microbit.org/

4. To light up the first three LEDs, set the colours, then use the show command.

5. You can also make your own colours by combining Red, Green and Blue, or by combining
Hue, Saturation and Luminosity.

Physical tech from GO to WHOA! - Visual code edition 72

https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/HSL_and_HSV

6. Here’s a simple animation using a loop index to set each LED. Can you make it:
○ faster or slower?
○ repeat?
○ go back and forth?
○ do random colours?

Finding the sensor limit
7. Now attach the Sound Sensor to

P1. (We’ll keep P0 free in case we
want to make sound.)

Boson power
The most reliable solution is to power everything via the VIN USB
socket on the Boson Expansion Board. See THREE QUICK TIPS.

Results may vary if the micro:bit’s power is used.

Physical tech from GO to WHOA! - Visual code edition 73

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.uq8xqnarahz

8. We know that the micro:bit reads between 0 and 1023, but we need to know the highest
possible value the sound sensor can give.

Make a loop to learn and hold onto this upper limit. (A clap should be enough to reach it.)

9. Use button A to display the upper limit. Write it down. (It may be around 600.)

Physical tech from GO to WHOA! - Visual code edition 74

Music lights
10. Here’s the setup to code our vertical music display.

11. The strip has 7 LEDs, so divide your sound sensor’s upper limit by 7 and find the range for
each LED. eg:

Physical tech from GO to WHOA! - Visual code edition 75

12. Here’s the complete program. The LEDs go from green to red as they near the top.

Physical tech from GO to WHOA! - Visual code edition 76

Make a structure
12. Use materials of your choice to build a firm structure for your LED strip.

Here’s a LEGO construction with a DJ.

Physical tech from GO to WHOA! - Visual code edition 77

Cooler colours
A. Change the code so that all the lights are off when the environment is reasonably quiet.

B. Make the brightness of the LEDs change with volume too, giving a pulsing effect.

C. Use button A to toggle the new brightness effect on and off.

D. Mirror the volume display using the built-in bar graph command on the micro:bit LEDs.

Lights for work and play
The LED strip is a fun way to display measurements, or just pretty colours!

● More improvements to our music display:

○ Colour alternative - Change the way the colours work so that the green pixels turn
orange when the orange levels are reached, and similarly for the red levels.

○ Lingering rider - Professional volume displays often include a lingering maximum - a
single LED that stays for a couple of seconds on the most recent maximum value.

○ Phat display - DJ Bosonalot likes to change the display at times during the show.
Write code so that Button B toggles to a rainbow cycle mode, which ignores volume.

● Pretty thermometer - Use the LED strip to display the temperature reading from the micro:bit.

● Bouncing LED - Use the Boson Push Button to bounce a pixel up the strip. It falls back down
on its own. Perhaps you could use the micro:bit’s accelerometer to make a paddle-ball toy.

● Health bar - Use the LED strip as a health bar for a game. All pixels are green when healthy,
but they change towards red as the bar drops.

Physical tech from GO to WHOA! - Visual code edition 78

ACTIVITY 2.4 - Sound effects board

Goals
● Build an old-school sound effects board.
● Learn how to generate tones with square waveforms.
● Use multiple inputs to control sound effects.
● Implement a program with multiple modes to cycle through.

JavaScript
parallel document

Python
parallel document

Design overview

We will build a sound effects board with:

● a push button,

● a rotation sensor,

● speakers or headphones.

Physical tech from GO to WHOA! - Visual code edition 79

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.vm1e432ay6z

Generating tones
1. We can make the membrane inside a speaker vibrate to generate a sound. Set P0 on to

stretch the membrane and off to relax the membrane.

Audio on P0
The Boson Expansion Board has an audio port for
headphones or speakers.

It always uses P0, so other sensors will need to use
P1 or P2.

Physical tech from GO to WHOA! - Visual code edition 80

2. A shorter delay of 500 microseconds makes the membrane vibrate faster.

(Find the wait (μs) command in the Advanced → Control menu)

Wavelength
We’ve just generated a square waveform that is up for 500 microseconds and down
for 500 microseconds.

This gives a full wavelength of 1 ms.

Playing with wavelength

A. Play with the wait time and observe what happens to the sound.

B. Replace the while loop with a for loop. Make the wait time change from 0 μs up to 2000 μs.

Physical tech from GO to WHOA! - Visual code edition 81

Using frequency
3. We measure frequency in waves per second. eg. Middle C is 262 Hz (waves per second).

wavelength in μs = 1 000 000 ÷ frequency

Add the equation to calculate wavelength for a given frequency, and test it with Middle C.

Humans are particularly sensitive to frequencies between
2000 and 4000 Hz.

These are the frequencies babies make when
crying.

Physical tech from GO to WHOA! - Visual code edition 82

4. Now for some fun! Attach the
Rotation Sensor to P2 on the
Boson Expansion Board.

5. A couple of simple changes and we have an adjustable tone!

Physical tech from GO to WHOA! - Visual code edition 83

Multi-mode
6. Let’s construct our

multi-mode sound effects
board.

Attach the push button to P1.

Our setup will be:

mode 0 → Frequency knob (already done)

mode 1 → Light theramin (use micro:bit light sensor instead of knob)

mode 2 → Pew-pew sounds (generate with a loop)

mode 3 onwards → Add your own!

Physical tech from GO to WHOA! - Visual code edition 84

7. We’ll use a number variable currentMode to keep track of which mode we are in.

8. A light theramin makes a spooky sound when you wave your hand near the micro:bit.

The micro:bit’s own LEDs serve as its light sensors.

Full daylight can give a value up to 255, but this quickly drops
and can stay below 20 in a dark-to-moderately lit room.

Physical tech from GO to WHOA! - Visual code edition 85

Don’t delete your first function, doFrequencyKnob! Make a new one doLightTheramin.

Physical tech from GO to WHOA! - Visual code edition 86

9. The third mode is a “pew-pew” sound, using a loop to quickly slide down the frequency.

Don’t delete your first two functions! Make a new one doPewPew.

Physical tech from GO to WHOA! - Visual code edition 87

10. Finally, add code for the push button (on P1) to cycle through the modes.

Physical tech from GO to WHOA! - Visual code edition 88

Maybe use headphones?
C. Reverse the PewPew sounds to go up instead of down.

D. In Frequency Knob mode, allow the user to press Button A to get a once-off display of the
current frequency.

E. Add a fourth mode. Use the Music command ring tone to play a random frequency between
1000 and 20000 Hz.

F. Use the RGB LED Strip to show the current mode.

Old-school sounds
The earliest synthesisers and gaming consoles used these techniques to make sound effects.

● Music speed up - Set the micro:bit to play a tune, then use the rotation sensor to adjust the
tempo.

● Superboard - Combine two micro:bits with radio to make a super sound effects board with
twice the buttons and knobs.

● Making waves - Research how synthesisers create sounds (you might want to start here),
and try adding waveforms to make new sounds.

● Game sound effects - Use the techniques learned to make sound effects for a micro:bit
game.

Physical tech from GO to WHOA! - Visual code edition 89

http://synthesizeracademy.com/waveforms/

ACTIVITY 2.5 - Swarm intruder alert system

Goals
● Build a peer-to-peer, expandable alert system.
● Use multiple sensors to detect an intruder.
● Adapt the micro:bit’s light sensing to detect sudden shadows.
● Connect micro:bits with radio for a truly expandable system.

JavaScript
parallel document

Python
parallel document

Design overview

We will build a
peer-to-peer alarm
system, with:

● a floor-mounted
micro:bit to
detect shadows
on the floor,

● a wall-mounted
micro:bit to
detect motion,

● a ceiling-
mounted
micro:bit to
detect sounds.

If any 2 micro:bits are
tripped, the whole
system will go into
alarm.

This makes a
distributed system that
is difficult to disarm.

Physical tech from GO to WHOA! - Visual code edition 90

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.ci8j3evd59ke

Light sensing micro:bit
1. Start with micro:bit A. It doesn’t need Boson Expansion Board.

This quick program keeps displaying the micro:bit’s light sensor reading.

The light sensor range is counter-intuitive. Full daylight can give a value up to 255,
but this quickly drops and can stay below 20 in a dark-to-moderately lit room.

2. Did you notice a bad reading? The very first reading is always 255! This is a quirk when we
first start up the sensor.

This is easily solved. Just dump the first reading in a garbage variable and wait a moment
before continuing.

Physical tech from GO to WHOA! - Visual code edition 91

3. Over the day, light levels will naturally change in a room. To detect a sudden light change,
we’ll need a moving base light level.

Here’s our plan in pseudocode:

Start sensor (take garbage reading)

baseLevel ← current light level

REPEAT forever

IF current light level is much less than baseLevel THEN

This micro:bit is tripped!

ELSE

baseLevel ← current light level

END IF

END REPEAT

Physical tech from GO to WHOA! - Visual code edition 92

4. Introduce a variable to indicate this micro:bit has been tripped.

Physical tech from GO to WHOA! - Visual code edition 93

5. Now, separate the sensing code into functions.

Don’t lose this program!
We’re moving onto the next micro:bit, but we’ll come back to this program later.

Physical tech from GO to WHOA! - Visual code edition 94

Sound sensing micro:bit
6. Insert micro:bit B into a Boson

Expansion Board.

Attach the Sound Sensor to P1.

Boson power
The most reliable solution is to power this micro:bit via the VIN USB
socket on the Boson Expansion Board. See THREE QUICK TIPS.

Results may vary if the micro:bit’s power is used.

7. Our second micro:bit will sense a sudden change in sound level.

Begin with the same basic structure as micro:bit A.

Physical tech from GO to WHOA! - Visual code edition 95

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.uq8xqnarahz

8. As with the light sensor, we’ll use a moving base level.

baseLevel ← current sound level

REPEAT forever

IF current sound level is much more than baseLevel THEN

This micro:bit is tripped!

ELSE

baseLevel ← current sound level

END IF

END REPEAT

Don’t lose this program!
We’re moving onto the last micro:bit, but we’ll come back to this program later.

Physical tech from GO to WHOA! - Visual code edition 96

Motion sensing micro:bit
9. Insert micro:bit C into a Boson

Expansion Board.

Attach the Motion Sensor to P1.

10. Our third micro:bit will be triggered by the motion sensor, just like in ACTIVITY 2.2.

Begin with the same basic structure as the other two micro:bits.

Physical tech from GO to WHOA! - Visual code edition 97

11. Motion is confirmed if the sensor is active for a full 2.5 seconds.

Physical tech from GO to WHOA! - Visual code edition 98

Hitting the alarm
11. If any one of the micro:bits is tripped, it should begin sending messages every second.

Physical tech from GO to WHOA! - Visual code edition 99

12. If a micro:bit is tripped and it gets a message from another one, it’s time to hit the alarm.

Physical tech from GO to WHOA! - Visual code edition 100

Physical tech from GO to WHOA! - Visual code edition 101

Alarm! Alarm!
A. Add code so the micro:bits play a melody once the alarm is going.

(Speakers can be attached to just one of them.)

B. Increase the initial time delay before micro:bit C (motion sensing) becomes active. This should
be at least 10 seconds to allow people to leave the premises.

C. Intruders sometimes have torches. For micro:bit A (light sensing), add code so it also trips if
the light level rises suddenly.

D. An untripped micro:bit may not go into alarm mode, even if the other two do. Fix this in the
common code by making sure the ALARM! message is properly received and acted on.

Over to you
We’ve now explored all the modules in the Boson Starter Kit. What else can you make?

● More improvements to our intruder alert system:

○ Hidden reset - The reset button is out of sight. Add code so that a press of button B
on any one micro:bit forces a reset on all three.

○ Reset code - Improve your button B mass reset with a trick or password (eg. you must
hold the button for 3 seconds, or you must follow it with a combination of A and B.)

○ Accelerometer alarm - This is a fourth micro:bit design. Attach it to a door or some
object in the house that is likely to move in case of an intrusion.

● ??? -

● Testing heat sensor - The motion sensor should only respond to changes in infrared (heat).
Build a tester that uses the mini servo to wave a piece of cardboard or LEGO in front of the
motion sensor.

Physical tech from GO to WHOA! - Visual code edition 102

MODULE 3
Real-world projects with BBC micro:bit and BOSON Science Kit.

Physical tech from GO to WHOA! - Visual code edition 103

 THREE WAYS to get data off the micro:bit
You recorded temperature readings once per hour over 24 hours, and stored them in
an array. How can you get this data off the micro:bit for analysis in a spreadsheet?

1 Code a loop to scroll each array value on the
micro:bit’s display when Button A is pressed. Button B
moves to the next value.

Write down each value and/or enter the values
manually into a spreadsheet.

Is your micro:bit fixed somewhere? Use radio in your
code to send the values to another micro:bit first.

2 Use Serial commands in your code to send text to a
computer via USB.

The text appears in a terminal app on the computer,
and can be copied-pasted from there.

Coding in Python only? Offline environment Mu
includes a terminal (Windows, Mac or Linux).

Coding in Visual or JavaScript? Try the
MakeCode for micro:bit app (Windows 10 required).

Just want a terminal alone?

● Mac and Linux follow specific instructions.

● Windows install drivers and terminal app.

3 Use a mobile app like Bitty Data Logger to receive
data on your iOS or Android device.

Data is sent to the device over Bluetooth, and can be
shared as a spreadsheet from the app.

Note:

● Bitty gathers data directly from micro:bit’s
internal sensors (accelerometer, temperature,
magnetometer). It does not give access to data
stored in variables / arrays.

● App is not free.

Physical tech from GO to WHOA! - Visual code edition 104

https://codewith.mu/en/
https://www.microsoft.com/en-au/p/makecode-for-micro-bit/9pjc7sv48lcx
http://microbit.co.uk/td/serial-library
https://www.microbit.co.uk/td/serial-library
http://www.bittysoftware.com/apps/bitty_data_logger.html

ACTIVITY 3.1 - Smart robotic fan

Goals
● Create an “old fashioned” robotic swinging fan that goes based on

humidity and temperature.
● Test the Boson Humidity Sensor and Mini Servo Module.
● Use the OLED module to help test sensor values.
● Use a Maths formula to control behaviour.

JavaScript
parallel document

Python
parallel document

Design overview
We will build a fan that swings back and forth if the temperature and humidity are too high.

Physical tech from GO to WHOA! - Visual code edition 105

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.zdf50rgcecls

To measure both temperature and humidity together, we’ll use a value called the discomfort level.
The fan will move when the discomfort level gets too high.

discomfort level = humidity in % + (temperature in °C × 20)

How uncomfortable is it?
Our formula is simplified. Researchers actually use many factors to
determine “comfort” including:

● temperature,
● humidity,
● air speed,
● metabolic rate (how active is your body right now?),
● clothing.

See the CBE Thermal Comfort Tool for more information.

Testing the Humidity Sensor
1. First, we’ll test the

Humidity Sensor without
the micro:bit.

Attach the Humidity
Sensor through the small
Mainboard to the OLED
Module as shown.

(Remember to give the
Mainboard power via USB lead.)

2. Tap the button on the OLED Module until you see Air Humidity. The OLED Module presents
the reading as a percentage.

3. Now tap the button until you see Analog Data. This is the value that will go to the micro:bit.
What do you notice about it?

The Boson Humidity Sensor reads the relative humidity in the
environment.

It gives a value (between 0 and 1023) which is approximately 10
times the reading in percentage form.

eg. 45% humidity gives the value 450.

Physical tech from GO to WHOA! - Visual code edition 106

http://comfort.cbe.berkeley.edu/

Calculating discomfort
4. Now attach the Humidity Sensor to

P0 on the Boson expansion board.

5. Make a loop to keep getting the Humidity Sensor reading on P0, as well as the micro:bit’s
temperature reading, and scroll them on screen.

Physical tech from GO to WHOA! - Visual code edition 107

6. Divide the sensor value by 10 to get the actual humidity in %.

Did you get a strange value after that calculation?

eg. Instead of 44.3, the micro:bit scrolled 44.299999999999998?

This is a Maths quirk on the microcontroller, and it may not occur on the preview
when coding. To deal with it, we’ll use the Maths round command.

7. Round humidity to the nearest whole number before displaying it.

Physical tech from GO to WHOA! - Visual code edition 108

8. Now, calculate the discomfort level. The formula is:

discomfort level = humidity in % + (temperature in °C × 20)

Note down the value you get. Depending on your classroom environment, it should be
between 400 and 600.

Physical tech from GO to WHOA! - Visual code edition 109

9. Breathe (“haaaa”) on the Humidity Sensor. Discomfort level should rise by at least 15, then
fall back down slowly. Find your threshold value (eg. 525) to show an alert icon.

Driving the fan

10. For the old-fashioned fan, we’re going to use the Mini Servo. Attach it to port P8.

Physical tech from GO to WHOA! - Visual code edition 110

See ACTIVITY 2.2 for an introduction to the
servo motor.

11. Turn the servo back and forth 90° each time the discomfort is found to be too high.

TIP: To get enough power, attach USB power to the VIN port on the Boson Expansion Board.

Physical tech from GO to WHOA! - Visual code edition 111

Make the mechanism
12. Use materials of your choice to build a platform for your sensors and fan.

This construction is built with LEGO, cardboard and duct tape:

Manufacturing your own parts
If you have access to a 3D printer or laser cutter, you
can design and build your own pieces.

This LEGO mount attaches to the Boson Expansion
Board with the standard Boson screws and hex nuts.

Find it on Tinkercad here.

Physical tech from GO to WHOA! - Visual code edition 112

https://www.tinkercad.com/things/grQQ8bxQH4W

“Fan”-made sequels
A. Double the fans! Add the Boson Mini Fan to P12 and have it turn on at the same time as the

swinging fan.

B. Edit your code to adjust the formula for discomfort level, giving humidity more influence:

discomfort level = (humidity in % × 2) + (temperature in °C × 20)

C. Instead of scrolling the discomfort level on-screen, use custom icons to quickly show if
humidity rose or fell since last checked.

D. Conditions in a room are hard to predict.
Add the rotation sensor to P1. Edit your program so that the rotation sensor can adjust the
discomfort threshold for turning on the fan.

Sensors and servos
It’s fun to activate moving parts via sensors!

● One more improvement for our fan system:

○ Motion sensing system - Use the motion sensor (Boson PIR Sensor) to deactivate
the fan if there is no one around after 30 seconds.

● Sensor calibrator - The Boson Temperature Sensor works a little differently from the one on
the micro:bit. It does not give degrees Celsius.

○ Write a program to display a reading from both sensors whenever you press button A.

○ Take readings in 3 different places (eg. take one after leaving it in the fridge).

○ Compare the values in each place to discover a common divisor. Use it to convert the
readings from the Boson Temperature Sensor into degrees Celsius.

● Button surprise - When the user presses the Boson Push Button, a surprise arm swings
around to tap them on the hand.

● Classroom noise alert - Use the Mini Servo to swing up a “BE QUIET!” sign if the sound
level in the classroom is too high.

Physical tech from GO to WHOA! - Visual code edition 113

ACTIVITY 3.2 - Portable weather station

Goals
● Create a portable sensor array to collect light, humidity and

temperature data.
● Test the Boson Light and Temperature Sensors.
● Use Serial communication to send data to computer.
● Use spreadsheet software to analyse and present the data.

JavaScript
parallel document

Python
parallel document

Design overview
The device operates
over 2 phases.

In Phase 1, it gathers
20 readings from all
three sensors over the
course of 3 minutes.
(No need for computer
connection.)

In Phase 2, we connect
USB to the computer
and the device sends
the data over serial.

The data can then be
opened in spreadsheet
software.

Physical tech from GO to WHOA! - Visual code edition 114

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.6am51nlv4fvo

Before you begin
This lesson introduces Serial communication, described in THREE WAYS as Option 2. For
this example, we will use the terminal software Tera Term on the computer.

Whichever terminal software is chosen, using Serial in Windows requires installing software
on the computer.

Testing the Light Sensor
1. Test the Light Sensor

without the micro:bit.

Attach the Light Sensor
through the small
Mainboard to the OLED
Module as shown.

(Remember to give the
Mainboard power via
USB lead.)

2. Tap the button until you see Analog Data. This is the value that will go to the micro:bit.

The Boson Light Sensor measures light intensity.

It gives a value between 0 (0% intensity) and 1023
(100% intensity).

3. Now attach the Light Sensor to P0
on the Boson expansion board.

Physical tech from GO to WHOA! - Visual code edition 115

4. To convert the range 0 → 1023 into 0 → 100%, we simply divide by 10.23.

5. As with our reading in ACTIVITY 3.1, we’ll use round to deal with any long decimals.

Rounding
This strict rounding makes sense when using the small LED display on the micro:bit,
but it will not be necessary for the serial output.

Physical tech from GO to WHOA! - Visual code edition 116

Testing the Temperature Sensor
4. Test the Light Sensor

without the micro:bit.

Attach the Light Sensor
through the small
Mainboard to the OLED
Module as shown.

(Remember to give the
Mainboard power via
USB lead.)

5. Tap the button until you see i11 Temperature. The OLED Module presents the reading in
degrees Celsius and degrees Fahrenheit.

6. Now tap the button until you see Analog Data. This is the value that will go to the micro:bit.

The value from the Boson Temperature Sensor ranges between
0 and 1023. How do we convert for temperature?

The rate is 33.33°C per volt. Since the micro:bit operates at 3.3 V,
the highest possible value of 1023 would be 109.989°C.

So, take any value and multiply by 109.989 then divide by 1023.

7. Now attach the Temperature
Sensor to P2 on the Boson
expansion board.

Physical tech from GO to WHOA! - Visual code edition 117

8. Read in the value and convert to °C: multiply by 109.989 then divide by 1023.

9. Again, we’ll use round to deal with any long decimals.

Practicing Serial output

10. Ensure your micro:bit is plugged into your computer, then run Tera Term. (Tera Term must be
installed. It can be downloaded from ttssh2.osdn.jp/index.html.en)

11. Set up the connection as per the instructions at microbit.co.uk/td/serial-library.

a. Click File -> New Connection…
○ Choose Serial, then press OK.

b. Click Setup -> Serial port...
○ Set Speed to 115200,
○ Set Data to 8 bit,
○ Set Parity to none,
○ Set Stop bits to 1 bit,
○ Press OK.

Physical tech from GO to WHOA! - Visual code edition 118

http://ttssh2.osdn.jp/index.html.en
https://microbit.co.uk/td/serial-library

12. Let’s send something from the micro:bit to the computer.

Download this code to the micro:bit as normal. The message should appear in Tera Term.

13. Let’s practice sending three numbers, separated by commas.

The power of serial
Now you can get big amounts of data off the micro:bit super fast.

But that’s not all. With serial, you can even type messages back from the computer to
the micro:bit!

What sort of cool things could you do now? Here’s some ideas:

● chatbot
● text adventure
● ASCII art

Physical tech from GO to WHOA! - Visual code edition 119

Putting it all together

14. First, construct your portable unit as per
the design overview for this lesson.

This LEGO unit holds a small battery
charger connected to the VIN port on the
Boson Expansion Board.

15. Here’s our plan.

Once the code is downloaded to the micro:bit, disconnect from the computer for PHASE 1.
Connect to the computer and open Tera Term before pressing button B for PHASE 2.

Physical tech from GO to WHOA! - Visual code edition 120

16. Here’s the code for PHASE 1 (collecting the data).

Objects
In the code above, the readings from the three sensors are placed in separate,
parallel arrays.

Another approach would be to use object-oriented programming (JavaScript

and Python only). With this approach, a Reading object would be created every
10 seconds, containing all three readings (light, humidity and temperature). It could
also include a timestamp. Each Reading object would then be added to an array for
storage.

Physical tech from GO to WHOA! - Visual code edition 121

17. Now add the code for PHASE 2 (sending the data via serial).

Physical tech from GO to WHOA! - Visual code edition 122

Using the data
18. If all went well, your Tera Term is filled with

data, nicely separated by commas.

Click File -> Log…
● Set File name to data.csv,
● Tick Include screen buffer,
● Press OK.

19. You now have a .csv file that
can be opened in
spreadsheet software like
Microsoft Excel, Google
Sheets, or Numbers.

Make a line graph of your
data and begin your analysis.

Physical tech from GO to WHOA! - Visual code edition 123

Data reporting
A. Before the serial communication begins, add code to show the average temperature for the

whole experiment.

B. Use the micro:bit’s own light sensor to take an additional set of readings. Which one reacts
faster?

C. Use the micro:bit’s own temperature sensor to take an additional set of readings. Which one
reacts faster?

Serial for breakfast
Now that you have serial communication, what other data could you collect and analyse?

● Micro-climate experiments - Have micro:bits collect data throughout a day (eg. in the house,
in shaded vegetation, outside in the sun). Compare the readings through the day. Identify the
times of the day when the climate conditions are most different and the times of the day when
the conditions are most similar.

● Data relayer - Use the radio functionality to set up a micro:bit as a data relayer for other
micro:bits. The data relayer immediately sends all received radio messages via serial to the
computer.

● Chatbot - Use two-way serial communication to turn your micro:bit into a chatbot. It responds
to things you say by looking for keywords in your input. You can still use the micro:bit’s own
features and Boson modules to make things even more fun!

● Text adventure - Use two-way serial communication to write a text adventure, with the
addition of pictures, sounds and tactile responses using the micro:bit’s screen and Boson
modules.

Physical tech from GO to WHOA! - Visual code edition 124

ACTIVITY 3.3 - Robotic plant waterer

Goals
● Create an automated system to water a plant under the appropriate

conditions.
● Test the Boson Soil Moisture Sensor.
● Combine factors from multiple sensors to determine watering.
● Control a servo to sprinkle gravity-fed water on a plant.

JavaScript
parallel document

Python
parallel document

Design overview
Our system will water a plant
only under certain conditions.

It uses:

● light intensity from a
Light Sensor to
determine if it is the
best time to water,

● soil wetness from a
Soil Moisture Sensor
to factor into watering
frequency,

● air humidity from a
Humidity Sensor to
factor into watering
frequency.

When it is time to water, a
Mini Servo rotates the end of
a flexible pipe from a
container of water.

Physical tech from GO to WHOA! - Visual code edition 125

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit?pli=1#heading=h.d9ob3azbp87u

Testing the Soil Moisture Sensor
1. Test the Soil Moisture

Sensor without the
micro:bit.

Attach the sensor
through the small
Mainboard to the OLED
Module as shown.

(Remember to give the
Mainboard power via
USB lead.)

Working with water
Water and circuits don’t mix!

● Water should not touch the BBC micro:bit or Boson
Expansion Board.

● Water should not touch the main part of any Boson module.

● Only dip the metal rods at the bottom of the Soil Moisture
Sensor. Do not bury the whole module.

2. Tap the button until you see Analog Data. This is the value that will go to the micro:bit.

Note down the values when you dip the sensor in dry soil, wet soil and water. Your body is
also conductive!

The Boson Soil Moisture Sensor measures the conductivity
between its two rods. Since water is an effective conductor of
electricity, wet soil can be distinguished from dry soil.

Theoretically, the sensor can give a value between 0 (driest) and
1023 (wettest).

Physical tech from GO to WHOA! - Visual code edition 126

3. Now attach all three sensors to
the Boson expansion board:

● Light Sensor to P0

● Humidity Sensor to P1
● Soil Moisture Sensor to

P2

4. Our first program will simply keep displaying the readings from each sensor.

Physical tech from GO to WHOA! - Visual code edition 127

Time to water?
5. Here’s our plan. We check every second to decide if another short watering is needed.

NOTE: In this solution, we won’t vary watering time. Each watering is short.

REPEAT forever

lightIntensity ← read from sensor P0
airHumidity ← read from sensor P1

soilMoisture ← read from sensor P2

airTemperature ← read from micro:bit

Calculate airDrynessFactor from airHumidity

Calculate soilDrynessFactor from soilMoisture

Calculate temperatureFactor from airTemperature

Decide waterNeeded based on airDrynessFactor, soilDrynessFactor and
temperatureFactor

IF waterNeeded AND lightIntensity indicates dusk / dawn THEN

Water the plant a little

END IF

Wait for 1 second

END REPEAT

Physical tech from GO to WHOA! - Visual code edition 128

6. We’ll begin by storing the raw sensor values in variables.

7. Send the values to the computer as we go. See ACTIVITY 3.2 on serial communication.

Physical tech from GO to WHOA! - Visual code edition 129

8. Calculate factors to help decide if watering is needed. This means weighing the influence of
the air humidity, soil moisture and air temperature.

Physical tech from GO to WHOA! - Visual code edition 130

9. Finally, it’s time to set a boolean variable waterNeeded for whether to water now or not.

Physical tech from GO to WHOA! - Visual code edition 131

Watering the plant
10. Attach the mini servo at P8.

See ACTIVITY 2.2 for an introduction to the
servo motor.

We will use it to rotate the end of a flexible tube
with gravity-fed water from a container.

Physical tech from GO to WHOA! - Visual code edition 132

11. A simple function waterPlant will rotate the servo to water the plant for a fixed time.
You may need to adjust the angles depending on your built design.

12. Dawn and dusk are often considered the best times to water a plant. We’ll activate watering
only if the light sensor reading is appropriate AND the waterNeeded boolean is true.

Physical tech from GO to WHOA! - Visual code edition 133

13. This is the complete program.

Physical tech from GO to WHOA! - Visual code edition 134

Build the system
14. One approach to the watering system is a gravity-fed, flexible tube from a container of water.

The construction below is built from cardboard and small wooden paddles, with a simple
flexible tube from a hardware store.

Physical tech from GO to WHOA! - Visual code edition 135

Water variation
A. Modify the formula for temperatureFactor so it might better suit tropical plants:

temperatureFactor = (airTemperature - 28) × 45

B. Create a counter to record how many waterings have happened since the program started.
Show the counter every time button A is pressed.

C. Measure how many millilitres of water each second of watering delivers. Change the counter
from B above to record litres used since the program started.

D. The present watering mechanism can lead to some spills as the watering lever drops down,
come up with a solution to this mechanical problem.

The seed of an idea
Smart robotic gardens are one approach to saving water and giving plants individual care.

● More features for the watering system

○ Create an alarm reminding the user to refill the water container. The alarm could be
set off after multiple waterings that did not prevent the soil from getting drier (ie. empty
waterings).

○ Log the amount of watering required over a period of days or weeks, and see if you
can correlate it with weather conditions over the time.

● Seed germination experiment - Perform an experiment with two sets of seeds planted in
different soil conditions (eg. wetter vs. drier soil, brighter vs. darker chamber). Use the sensors
to monitor the conditions and keep them stable so that your experiment has accuracy.

● Automated greenhouse - Build a small greenhouse model. Use mini servos to open windows
when the air or soil inside is too hot.

Physical tech from GO to WHOA! - Visual code edition 136

ACTIVITY 3.4 - Lie detector

Goals
● Create a lie detector that detects changes in heart rate.
● Test the Boson Heart Rate Sensor.
● Use a queue array to maintain a running average of 9 heartbeats for

active heart rate monitoring.

JavaScript
parallel document

Python
parallel document

Design overview
We will build a lie detector with:

● a heart beat sensor to detect each heart beat from a finger,

● an RGB LED strip to show whether the heart rate is higher or lower than a baseline.

Physical tech from GO to WHOA! - Visual code edition 137

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit#heading=h.oafbecwg30lr

Testing the Heart Rate Sensor
1. Attach the Heart Rate Sensor to

P0 on the Boson expansion board.

The Boson Heat Rate Sensor is digital. For each
heartbeat, it gives an ON (1) value, then an OFF (0)
value.

It also shows the reading on its own blue LED.

● Always use the VIN USB port to provide power
to the Boson Expansion Board.

● Place a finger on the sensor as shown. Do not
press too hard.

● Hold still for at least 10 seconds while the
sensor adjusts to your pressure.

2. We’ll use a loop to plot a single LED when a heartbeat comes in from the sensor.

Physical tech from GO to WHOA! - Visual code edition 138

3. You may find the reading jitters a bit on the way down, even after the sensor adjusts to your
pressure.

Let’s improve the code so that it waits while the reading is still 1, then pauses for 250 ms once
the reading drops to 0.

Why not the Heart icon?
We’re using an LED plot rather than a show icon. This is because the show icon
block contains an in-built delay of 400ms.

If you want to remove that delay: Switch to Javascript, add ,0 to the end of the
command, then switch back.

Physical tech from GO to WHOA! - Visual code edition 139

Finding heart rate
4. We’ll count beats over a 15-second period, then multiply by 4 to get the beats per minute.

Scroll “Place finger.”

Wait 10 seconds for the sensor to adjust

Show a tick icon

numberOfBeats ← 0

REPEAT for 15 seconds only

IF a heartbeat is detected

Add 1 to numberOfBeats

END IF

END REPEAT

heartRate ← numberOfBeats × 4

Scroll heartRate, “ bpm”

5. Here’s the start code.

Physical tech from GO to WHOA! - Visual code edition 140

6. To loop for 15-seconds only, use a variable finishingTime and the micro:bit’s running time.

7. Now put in the heartbeat code from before, to show each heartbeat on the display.

Physical tech from GO to WHOA! - Visual code edition 141

8. We can now add code for recording the number of heartbeats, and calculating the heart rate.

Physical tech from GO to WHOA! - Visual code edition 142

Ongoing heart rate

9. So far, our code can determine heart rate once after a period of time. To actively monitor heart
rate, we’ll need something more sophisticated.

1 2

Set up an array for
recording 10 beat
times.

Each of these is a
record of the
running time when a
beat occurred.

Initialise all values
to 0.

 When we detect a
heartbeat:

● remove the
first element
from the array,

● push the
recorded time
for the
heartbeat onto
the end. This
shuffles all the
others up.

3 4

Keep going. Soon
the array is filled
with recorded
heartbeat times
(measured in
milliseconds since
the program began).

 Now we can find the time interval between
9 heartbeats at any time. Subtract the
earliest (index 0) from the latest (index 9).

nineBeatInterval = 20140 - 12882
= 7258 ms

averageInterval = 7258 ÷ 9
= 806 ms

From here, we can calculate the heartrate.

heartRate = 60000 ÷ 806
= 74 beats per minute

Physical tech from GO to WHOA! - Visual code edition 143

10. Start with our earlier code for displaying heartbeats.

Physical tech from GO to WHOA! - Visual code edition 144

11. Now, add the array code.

Physical tech from GO to WHOA! - Visual code edition 145

Queue
This way of using an array is called a queue.
Values are pushed onto one end, and shifted off the
other end.

12. Add the calculation code.

Physical tech from GO to WHOA! - Visual code edition 146

13. To check the calculated heartRate, simply add an event to display it whenever button A is
pressed.

Remember to wait until at least 9 heartbeats have been recorded.

Physical tech from GO to WHOA! - Visual code edition 147

Detecting nervousness

14. If heart rate rises when a person is lying, we’ll need to get a baseline heart rate first. We’ll wait
35 seconds from when the program starts before storing this.

Here’s the overall plan:

Scroll “Place finger.”

Wait 10 seconds for the sensor to adjust

Show a tick icon

baselineHeartRate ← -1

REPEAT forever

Calculate heartRate using heartbeat array (see previous program)

IF baselineHeartRate = -1 THEN

IF running time > 35 seconds THEN

baselineHeartRate ← heartRate

END IF

ELSE

Set RGB LED strip to show deviation of heartRate from baselineHeartRate

END IF

END REPEAT

15. Connect the LED RGB Strip to P8 on the Boson Expansion Board.

Physical tech from GO to WHOA! - Visual code edition 148

16. Add starting code to the previous program, and tidy the heart rate calculation into a function.

Physical tech from GO to WHOA! - Visual code edition 149

17. Introduce the baselineHeartRate variable.

Physical tech from GO to WHOA! - Visual code edition 150

18. Finally, add the code to set up and use the RGB LED strip. Show three green lights for the
baseline heart rate, then add a light for every 2 beats per minute the heart rate rises above it.

Physical tech from GO to WHOA! - Visual code edition 151

Listen to your heart

A. Use the solution to find someone’s heart rate after some exercise.

B. Based on the result in part A, change the code so that all the lights turn blue when the
“activity” heart rate is reached again.

C. Add a sound for each heart beat, so that you can listen to your own heartbeat like a
stethoscope.

Heart and queue
What else could you do with the skills in this activity?

● Experimenting with the design

○ Place the waterproof temperature sensor in warm water and have a person place one
hand in the water as you add ice. Is there a correlation between their heart rate and
the temperature of the water?

○ Use the waterproof temperature sensor in a different way - to detect subtle rises in a
person’s skin temperature when nervous.

○ Activate and increase the speed of a mini fan when heart rate goes up.

● Heartbeat music - Use the set tempo command to match the beat of music to a heartbeat.

● Message queue - Create a queue array for messages received over the micro:bit’s radio.
Received messages are pushed onto the queue, then shifted off and displayed whenever a
button is pressed.

Physical tech from GO to WHOA! - Visual code edition 152

ACTIVITY 3.5 - Perfect pH advisor

Goals
● Set up the micro:bit to guide you to a desired pH level in a solution.
● Test the Boson pH Sensor.
● Test the Boson Waterproof Temperature Sensor.
● Use the micro:bit buttons to set a desired pH level.

JavaScript
parallel document

Python
parallel document

Design overview

Use Rotation Sensor to choose a target pH for a liquid, between 5.5 and 8.5.

The micro:bit actively monitors

● pH of the liquid with pH Sensor,
● temperature of the liquid with Waterproof Temperature Sensor.

The micro:bit advises on its display if the liquid is too acidic, too alkaline, or on target.

Physical tech from GO to WHOA! - Visual code edition 153

https://docs.google.com/document/d/19hEnae3sO5OjvVq6blam4MZKfxDcQxVX4qx3RYV7cB0/edit?pli=1#heading=h.kbhd04pw519o

Before you begin
Liquid and circuits don’t mix!

● Liquid should not touch the BBC micro:bit or Boson Expansion
Board. Liquid should not touch the main part of any Boson module.

No hot liquid!

● Sensor leads and casings are not made for high liquid
temperatures. Keep your liquid below 50°C.

Testing the pH Sensor
1. Carefully remove the cap from the pH Sensor tube (without spilling the fluid inside), then dip

the exposed end of the tube in water.

Attach the sensor through the small Mainboard to the OLED Module as shown. (Remember to
give the Mainboard power via USB lead.)

2. Tap the button until you see i17 PH.

Tap water should have a pH between 6.5 and 8.5.

Physical tech from GO to WHOA! - Visual code edition 154

The Boson pH Sensor is a delicate instrument.

● Avoid sticky or sugary liquids.

● When done,

○ rinse the end of the tube under water,

○ reattach the cap to the tube.
The cap contains a Potassium Chloride
solution (3.3 mol/L) to keep the sensitive
electrode moist.

3. Attach the pH Sensor to P1 on the Boson expansion board.

4. We’ll use a loop to keep scrolling the analog value from P1.

Physical tech from GO to WHOA! - Visual code edition 155

5. To convert this value to pH, multiply by 14, then divide by 1023.

6. Our pH value has too many digits to display nicely. To round it to 1 decimal place, we’ll need
to break it into a whole digit and a decimal digit.

pH = 7.4

wholeDigit = 7

decimalDigit = (pH - wholeDigit) × 10
= (7.4 - 7) × 10
= 0.4 × 10
= 4

Physical tech from GO to WHOA! - Visual code edition 156

7. Finally, we can show both digits by concatenating them with a ‘.’ in between.

Testing the
Waterproof Temperature Sensor

8. Test the Waterproof Temperature Sensor without the micro:bit.

Dip the end piece in water and attach the sensor through the small Mainboard to the OLED
Module as shown. (Remember to give the Mainboard power via USB lead.)

9. Tap the button until you see i19 Temperature. (Do not read i11 Temperature!)
Dry the end piece and hold it in your hand to see the difference as it warms.

Physical tech from GO to WHOA! - Visual code edition 157

10. Attach the Waterproof Temperature Sensor to P0 on the Boson expansion board.

11. Again, we’ll use a loop to keep scrolling the analog value. What do you notice about higher
temperatures (inside your hand) and lower temperatures (in the water)?

The Boson Waterproof Temperature Sensor gives very
different analog values to the other temperature sensor we
used in ACTIVITY 3.2.

As shown in the graph below, the relationship is curved
and negative (value is lower when temperature is higher).

Physical tech from GO to WHOA! - Visual code edition 158

How can we convert with these analog values to temperatures?

● One option would be to find the formula for the whole relationship. But
Microsoft Excel’s best matching trendline is a 4th-order polynomial!

● An easier option is to isolate the useful temperature range (0°C to 50°C) and
estimate with a simple linear equation.

12. Let’s invert the formula to convert the analog value to degrees, then output it.

value = -10.2 × temperature + 795

∴ temperature = (value - 795) ÷ -10.2

Physical tech from GO to WHOA! - Visual code edition 159

Basic operation
13. The full program has two phases: set the target pH, then monitor and advise.

Scroll “Choose target.”

REPEAT until Button B is pressed

targetPH ← Rotation Sensor reading mapped between 5.5 and 8.5

Scroll targetPH

END REPEAT

Scroll “Target set.”

REPEAT forever

actualPH ← pH Sensor reading

IF actualPH < targetPH - 0.1

Scroll “Too acidic.”

ELSE IF actualPH > targetPH + 0.1

Scroll “Too alkaline.”

ELSE

Show tick icon

Scroll “On target!”

END IF

END REPEAT

14. Attach all three sensors as per the
complete diagram at the start of this
activity.

Physical tech from GO to WHOA! - Visual code edition 160

Common household items like vinegar and sodium bicarbonate can be added to
adjust the pH of water.

15. The rotation sensor on P2 gives a reading from 0 → 1023.
Map this to 5.5 → 8.5 for the target pH.

Physical tech from GO to WHOA! - Visual code edition 161

16. Place the decimal display code we developed earlier into a function to display the target pH.

17. Next, begin the second phase of the program.

Physical tech from GO to WHOA! - Visual code edition 162

18. The guidance logic is simple. The actual pH is good if it is within 0.1 either side of the target.

Physical tech from GO to WHOA! - Visual code edition 163

My eyes! The goggles do nothing!

A. Replace the current messages “too acidic” and “too alkaline” with icons for quicker advice.

B. Allow the user to press Button A to display the actual pH at any time.

C. Using the code developed for testing the Waterproof Temperature Sensor, add icons for
“reduce temperature” and “raise temperature” on the micro:bit display, after the pH icons.
Assume the desired temperature is 20°C.

D. Add the LED strip to show the temperature variance from part C, instead of icons.

More experimentation needed
What else could you do with the skills in this activity?

● Further improvements to the pH advisor:

○ Use serial communication to add data logging to the system. For example, you could
gather evidence for whether fizzy drinks lose their acidity as they go flat.
(Note, you may find that carbonated water has a different result to cola, which also
contains phosphoric acid.)

○ Use a traditional pH indicator to verify the accuracy of the pH sensor.

○ Add temperature compensation. Measured pH actually varies depending on the
temperature of the liquid being measured. A bit of Maths can be used to compensate
for this, so that all pH readings are equivalent to room temperature (eg. 25°C).

● Aquaponics monitor - pH is one of the measurements used to monitor aquaponics and
hydroponics systems. The pH sensor can form one part of a complete system.

● Triple thermometer - You now have access to three means of measuring temperature; the
Boson Waterproof Temperature Sensor, the Boson Temperature Sensor and the micro:bit’s
own temperature sensor. Using radio and/or serial communication, take some accurate
measurements to compare the accuracy and speed of the three sensors.

Physical tech from GO to WHOA! - Visual code edition 164

 MORE MODULES
Looking for more inputs and ouputs to connect to the micro:bit?

1 The Gravity range of modules can be connected to the
Boson Expansion Board, even with the same leads.

The range includes over 100 sensors and actuators,
including sensors for touch, magnetic fields, tilting,
gases and air, flame, distance, joystick control and
many more.

Note:

● Not all gravity sensors may work with the
micro:bit. They are relatively cheap and can be
purchased individually for testing.

● Gravity sensors do not have the Boson
child-friendly, magnetic backpieces.

● See also the Micro:Mate, a smaller expansion
board for micro:bit perfect for Gravity’s own
leads.

2 The Boson Inventor Kit contains additional modules
for input (tilt, self-locking switch) and output (ultra
bright LED, buzzer, Gared motor).

It also includes various logic modules, which function
like logic gates between other connections.

3 Build your own sensors and circuits out of cardboard,
conductive tape or thread, and raw electronic
components.

Use alligator clips to connect to the large pins on the
bottom of the micro:bit, or at the bottom of the Boson
Expansion Board.

For more serious circuitry, try your hand at
breadboarding and prototyping. Both types of
expansions are readily available for the micro:bit.

Physical tech from GO to WHOA! - Visual code edition 165

https://www.dfrobot.com/gravity
https://www.dfrobot.com/product-1699.html

APPENDIX A - TINKER SOLUTIONS
Solutions for challenges.

Physical tech from GO to WHOA! - Visual code edition 166

ACTIVITY 1.1
A. Make a 4 second pause between each “Hello”.

from microbit import *
while True:
 display.scroll('Hello,')
 sleep(4000)

B. Instead of looping forever, limit the loop to exactly 5 times.

or

from microbit import *
for index in range(5):
 display.scroll('Hello,')

Physical tech from GO to WHOA! - Visual code edition 167

C. Now change the loop to happen 8 times.

or

from microbit import *
for index in range(8):
 display.scroll('Hello,')

D. Have the program show the index as it loops: “Hello 0”, “Hello 1”, “Hello 2”, etc.

from microbit import *
for index in range(6):
 display.scroll('Hello ' + str(index))

Physical tech from GO to WHOA! - Visual code edition 168

ACTIVITY 1.2
A. Change just the last line of the program so that the answer is always “Don’t count on it.”

“Don’t count on it” is at position 5 in the array, because the first value “It is certain” is
at position 0.

Physical tech from GO to WHOA! - Visual code edition 169

B. Add some more answers of your own. Remember to increase the limit of the random number.

Physical tech from GO to WHOA! - Visual code edition 170

C. Put in a loop so that the program starts again, without you having to press reset.

Physical tech from GO to WHOA! - Visual code edition 171

D. Modify the program to have a cheat. Pressing button B always gives “It is certain”.

We set the empty loop to continue to wait as long as neither button A nor button B is
pressed.

Then, we use if/else to check which of the two buttons was actually pressed.

Physical tech from GO to WHOA! - Visual code edition 172

ACTIVITY 1.3
A. Between 2 and 4 seconds is too long to wait at the start. Change it to between 1 and 3

seconds.

Physical tech from GO to WHOA! - Visual code edition 173

B. Change the program so that it shows a smiley face every time the user achieves a time lower
than half a second, a meh face if lower than a second, and a sad face otherwise.

Physical tech from GO to WHOA! - Visual code edition 174

C. Put in a loop so that the program starts again, without you having to press reset.

Physical tech from GO to WHOA! - Visual code edition 175

D. Now limit the game to exactly 3 rounds, then say “Game over”.

Physical tech from GO to WHOA! - Visual code edition 176

A. For fun, have the pixel light up in a different random position each time you play.

Physical tech from GO to WHOA! - Visual code edition 177

ACTIVITY 1.4
A. Change the game to count touches on one of the micro:bit’s pins, instead of the button.

Physical tech from GO to WHOA! - Visual code edition 178

B. Make it a random time limit. Don’t forget to tell the player the time limit before the game starts.

Physical tech from GO to WHOA! - Visual code edition 179

C. Give the player a target to win the game. eg. 15 presses in 5 seconds.

Physical tech from GO to WHOA! - Visual code edition 180

D. Run the original game three times. When finished all three games, display the average score.

The solution is to use an array scores to hold the scores.

The index for the loop is called round, because it is the number for each round of the
game (Round 0, Round 1 and Round 2).

As soon as each round is complete, we still display the score, but we also push that
score onto the array scores.

Finally, when all rounds are done, we calculate the average by first summing the
scores stored in the array at positions 0, 1 and 2.

Physical tech from GO to WHOA! - Visual code edition 181

ACTIVITY 1.5
A. Detect a collision. A collision is when the player and the brick are in exactly the same position.

When this happens, blink the overlapping LED two times, then resume the game.

We add code to the main routine.

Physical tech from GO to WHOA! - Visual code edition 182

B. Create a variable to count collisions. End the game at exactly 3 collisions.

Again, add code to the main routine.

Physical tech from GO to WHOA! - Visual code edition 183

C. Create a score variable and increase it by 1 every time the player successfully dodges the
brick. Print the score when the game is over.

Introduce score at the start of the main routine.

The moveBrick function is where we discover the brick reaching the bottom, so increase
score there.

Physical tech from GO to WHOA! - Visual code edition 184

Finally, add the score printout at the end of the main routine.

D. When the game is over, congratulate the player if the score is greater than 20.

Again, add code to the main routine.

Physical tech from GO to WHOA! - Visual code edition 185

ACTIVITY 1.6
A. Add extra check to the end of the program.

Physical tech from GO to WHOA! - Visual code edition 186

B. Add a function to display dots based on myRoll’s value.

Physical tech from GO to WHOA! - Visual code edition 187

C. Be sure to include the resetting of the roll variables to 0 inside the loop.

Physical tech from GO to WHOA! - Visual code edition 188

D. Add a variable myWins to keep the number of wins.

Physical tech from GO to WHOA! - Visual code edition 189

E. Write a function to show icons for a ticking clock.

Physical tech from GO to WHOA! - Visual code edition 190

ACTIVITY 2.1
A. No code change needed. Simply swap the modules.

B. A simple solution is to use the in-built graph command (Visual and JavaScript only).

Add code to the main routine.

Physical tech from GO to WHOA! - Visual code edition 191

Alternatively, write separate code for a custom solution. This function plots the sound level as
a crude bar graph using 5 horizontal lines. Could you improve it?

Is the micro:bit’s display too limited?

With just one colour (red), it might seem like only a small amount of detail can be
conveyed.

But remember:

● Each pixel can be lit separately.
● Each pixel can have its own brightness level (0 to 255).

Physical tech from GO to WHOA! - Visual code edition 192

C. Add a simple function to toggle the fan on and off, and use an empty to loop to wait until
button is released.

Physical tech from GO to WHOA! - Visual code edition 193

D. Use a variable clapThreshold for the number where a clap is detected, then set this variable
from the rotation sensor.

Add code to the main routine.

Physical tech from GO to WHOA! - Visual code edition 194

ACTIVITY 2.2
A. This simple solution chooses random positions between 25° and 75° for the servo. We’ve also

shortened the pause to 500 ms while the servo is moving.

Change code in the main routine.

Physical tech from GO to WHOA! - Visual code edition 195

B. Attach the LED to P12 on the Boson Expansion Board.

This new flashing function replaces the 500 ms pause while the servo is moving.

Physical tech from GO to WHOA! - Visual code edition 196

C. Add a simple check so the main program only proceeds when there is enough light.

Physical tech from GO to WHOA! - Visual code edition 197

D. Rename the variable noOfWaves to noOfActivations, and simply move the change
command.

Physical tech from GO to WHOA! - Visual code edition 198

ACTIVITY 2.3
A. This requires a simple adjustment to the lowest LED’s condition:

Physical tech from GO to WHOA! - Visual code edition 199

B. Inside the loop, set the brightness so that your sensor’s upper limit is mapped down to 255. In
this example, we divide the reading by 2.4.

Physical tech from GO to WHOA! - Visual code edition 200

C. Use a boolean variable brightnessActive to remember whether the brightness effect is
turned on.

Physical tech from GO to WHOA! - Visual code edition 201

D. Add the command inside the loop.

Physical tech from GO to WHOA! - Visual code edition 202

ACTIVITY 2.4
A. The wait time affects the pitch, because you are changing the wavelength of the soundwave.

B. This program produces a falling siren sound.

Physical tech from GO to WHOA! - Visual code edition 203

C. Reversing the PewPew makes a car alarm sound.

Physical tech from GO to WHOA! - Visual code edition 204

D. Add a check for button A inside the doFrequencyKnob function.

Physical tech from GO to WHOA! - Visual code edition 205

E. The fourth mode is small enough that it doesn’t require a separate function.

Physical tech from GO to WHOA! - Visual code edition 206

F. Remember to set up the LED strip at the start of the program.

Physical tech from GO to WHOA! - Visual code edition 207

ACTIVITY 2.5
A. Add the necessary Music command into all three micro:bit programs.

The existing code below is from micro:bit C, but the added code is the same for all three.

Physical tech from GO to WHOA! - Visual code edition 208

B. Here’s the complete code for microbit C (motion sensing) so far.

Physical tech from GO to WHOA! - Visual code edition 209

C. Modify the doLightSensing function:

Physical tech from GO to WHOA! - Visual code edition 210

D. Check the incoming message for the word “ALARM!”, then trip this micro:bit too.

The existing code below is from micro:bit A, but the added code is the same for all three.

Physical tech from GO to WHOA! - Visual code edition 211

ACTIVITY 3.1
A. Activate the mini fan at full speed by writing 1 (on) to P12. Deactivate it by writing 0 (off).

Physical tech from GO to WHOA! - Visual code edition 212

B. Simply modify the formula for calculating discomfort:

Order of operations
Imagine each Math block surrounded by brackets. The operation inside the block will
be performed first. But the purple lines can be subtle and easy to miss.

For the above example:

 ✓ correct

✗ incorrect

Physical tech from GO to WHOA! - Visual code edition 213

C. Use a variable previousHumidity to keep the most recent humidity reading for comparing.

Physical tech from GO to WHOA! - Visual code edition 214

D. The rotation sensor on P1 gives a reading between 0 and 1023, so the discomfort value can
be compared directly with it. Just a small turn of the knob will affect the sensitivity of the
system.

Physical tech from GO to WHOA! - Visual code edition 215

ACTIVITY 3.2
A. Write a function calculateAverageTemperature to do the Maths work. Call it from the main

program.

Physical tech from GO to WHOA! - Visual code edition 216

B. Add a new variable internalLight, and a new array internalLightReadings.

The micro:bit’s sensor ranges from 0 to 255, so divide by 2.55 to get a percentage value.

Physical tech from GO to WHOA! - Visual code edition 217

C. Add a new array internalTempReadings.

The micro:bit gives temperature in degrees Celsius directly.

Physical tech from GO to WHOA! - Visual code edition 218

ACTIVITY 3.3
A. Just a simple adjustment to the Maths for temperatureFactor:

Physical tech from GO to WHOA! - Visual code edition 219

B. Add a variable noOfWateringsDone, and increment it after each watering.

Physical tech from GO to WHOA! - Visual code edition 220

C. The solution below supposes that each watering uses 41mL.

Replace the variable noOfWateringsDone with noOfLitres and adjust the increment.

D. Engineered solutions will vary.

Physical tech from GO to WHOA! - Visual code edition 221

ACTIVITY 3.4
A. Everyone is different. You may find an “activity” heart rate between 100 and 170 bpm.

B. Add a check to your updateLEDStrip function. We will use 140 as the “activity” heart rate.

Physical tech from GO to WHOA! - Visual code edition 222

C. A short tone is enough. Add to the main program.

Physical tech from GO to WHOA! - Visual code edition 223

ACTIVITY 3.5
A. In the solution below, we invert the advice with an icon for “add more sodium bicarbonate” or

“add more vinegar”.

Physical tech from GO to WHOA! - Visual code edition 224

B. Create a similar function to displayTargetPH, then call it when Button A is pressed.

Physical tech from GO to WHOA! - Visual code edition 225

C. The temperature check follows the pH check. A short pause ensures the icons are seen.

Physical tech from GO to WHOA! - Visual code edition 226

D. Connect the LED strip to P8.
Light up the central LED in the strip green when the correct temperature is reached. Light
LEDs below blue for lower temperatures and LEDs above red for higher temperatures.

Program continues over page.

Physical tech from GO to WHOA! - Visual code edition 227

Physical tech from GO to WHOA! - Visual code edition 228

APPENDIX B - COURSE METHODOLOGY
The pedagogy behind this course.

Physical tech from GO to WHOA! - Visual code edition 229

Build → Tinker → Jump Off
The sequence of , and is a deliberate reflection of successful
classroom practice in the experience of the writers of this resource.

In the stage, concepts are taught progressively with all code and connections given.

Rather than have students merely copy the code, use this time to explore. eg .What would happen if
you changed this value? Can we make it work with the other button instead?

The stage is a series of challenges (some easy, some more challenging) to modify the
program, usually to augment and improve the solution made earlier.

There are often multiple solutions, but sample solutions are given in APPENDIX A.

 contains ideas for fresh projects based on the skills covered so far, as well as
occasional overhaul ideas for an existing project.

Depending on complexity, the suggestions in this section may take one lesson or many lessons, or
could form the basis for a large project.

Physical tech from GO to WHOA! - Visual code edition 230

Single sequence code
Like MIT’s Scratch, the environment at makecode.microbit.org allows for event trigger blocks (event
handlers) such as on button pressed and forever. However, this course keeps all code in only one
sequence, wherever possible, for the following reasons:

1. Encouraging better code sequence understanding. Misuse of event triggers can lead to
messy and unmanageable code, difficult to read and debug. While it is common for user
interfaces to be coded with multiple threads, a single thread encourages careful thinking in
planning the flow of the program.

2. Avoiding race conditions. Event triggers can often lead to situations where two code
threads are attempting to read or write to the same resource or variable, leading to
unpredictable results. Even worse, in the makecode environment, a thread of code without
pauses of any kind can prevent other threads from running at all.

3. Readability of code. While event triggers look attractive and readable as visual code, they

appear in JavaScript as anonymous functions, a relatively advanced technique that is
difficult to read and understand before the introduction of regular functions.

4. Integrity across languages. Event triggers are not available in Python for micro:bit.

✗ Using event trigger blocks

✓ Using one sequence

The button cannot interrupt the bar graph to
display the temperature as text. Both threads
are trying to access the display simultaneously.

A loop ensures that the program keeps checking
if button A is being pressed. The bar graph does
not return until after the string has been shown.

Physical tech from GO to WHOA! - Visual code edition 231

https://makecode.microbit.org/

